Hostname: page-component-5d59c44645-zlj4b Total loading time: 0 Render date: 2024-03-03T02:39:30.562Z Has data issue: false hasContentIssue false

Fabrication of nanoperforated ultrathin TiO2 films by inkjet printing

Published online by Cambridge University Press:  14 July 2015

Qian Xu*
Affiliation:
Center for Functional Materials, Laboratory of Physical Chemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku 20500, Finland
Jan-Henrik Smått
Affiliation:
Center for Functional Materials, Laboratory of Physical Chemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku 20500, Finland
Jouko Peltonen
Affiliation:
Center for Functional Materials, Laboratory of Physical Chemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku 20500, Finland
Petri Ihalainen
Affiliation:
Center for Functional Materials, Laboratory of Physical Chemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku 20500, Finland
*
a)Address all correspondence to this author. e-mail: qxu@abo.fi
Get access

Abstract

Fabrication of nanoperforated TiO2 thin films (NP-TiO2) on various substrates utilizing evaporation-induced self-assembly has been widely reported during recent years. For many applications, such as solar cells and gas sensors, it would be beneficial if the active material could be deposited onto a desired area or in the form of a pattern or array. In this study, inkjet printing was successfully used to produce NP-TiO2 at both ambient temperature and 60 °C. Especially for intermediate drop spacings (40 and 50 µm), millimeter-sized homogeneous NP-TiO2 patches were obtained with similar NP structure as those being processed by dip coating and drop casting. Compared to ambient temperature, inkjet printing at 60 °C provides a narrower height distribution of the NP structures of about 5 nm. Compared to dip coating and drop casting, inkjet printing enables the deposition of the ink onto target areas, thus enabling the fabrication of microscale arrays and other patterned structures.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, T.J., Sambasivan, S., Fischer, D.A., Yoon, W.S., Misewich, J.A., and Wong, S.S.: Electronic structure and chemistry of iron-based metal oxide nanostructured materials: A NEXAFS investigation of BiFeO3, Bi2Fe4O9, r-Fe2O3, γ-Fe2O3, and Fe/Fe3O4 . J. Phys. Chem. C 112, 10359 (2008).CrossRefGoogle Scholar
Dameron, A.A., Davidson, S.D., Burton, B.B., Carcia, P.F., Mclean, R.S., and George, S.M.: Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. J. Phys. Chem. C 112, 4573 (2008).CrossRefGoogle Scholar
Yang, M.Q., He, J.H., Hu, X.C., Yan, C.X., and Cheng, Z.X.: CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas. Environ. Sci. Technol. 45, 6088 (2011).CrossRefGoogle ScholarPubMed
Qin, H.C., Li, W.Y., Xia, Y.J., and He, T.: Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO. ACS Appl. Mater. Interfaces 3, 3152 (2011).CrossRefGoogle ScholarPubMed
Nanu, M., Schoonman, J., and Goossens, A.: Nanocomposite three-dimensional solar cells obtained by chemical spray deposition. Nano Lett. 5(9), 1716 (2005).CrossRefGoogle ScholarPubMed
Song, Y.Q., Liu, H.M., and He, D.H.: Effects of hydrothermal conditions of ZrO2 on catalyst properties and catalytic performances of Ni/ZrO2 in the partial oxidation of methane. Energy Fuels 24, 2817 (2010).CrossRefGoogle Scholar
Libera, J.A., Elam, J.W., Sather, N.F., Rajh, T., and Dimitrjevic, N.M.: Iron(III)-oxo centers on TiO2 for visible-light photocatalysis. Chem. Mater. 22, 409 (2010).CrossRefGoogle Scholar
Soja, G.R. and Watson, D.F.: TiO2-catalyzed photo degradation of porphyrins: Mechanistic studies and application in monolayer photolithography. Langmuir 25(9), 5398 (2009).CrossRefGoogle Scholar
Kuemmel, M., Allouche, J., Nicole, L., Boissière, C., Laberty, C., Amenitsch, H., Sanchez, C., and Grosso, D.: A chemical solution deposition route to nanopatterned inorganic material surfaces. Chem. Mater. 19, 3717 (2007).CrossRefGoogle Scholar
Järn, M., Brieler, F.J., Kuemmel, M., Grosso, D., and Lindén, M.: Wetting of heterogeneous nanopatterned inorganic surfaces. Chem. Mater. 20, 1476 (2008).CrossRefGoogle Scholar
Faustini, M., Capobianchi, A., Varvaro, G., and Grosso, D.: Highly controlled dip-coating deposition of fct FePt nanoparticles from layered salt precursor into nanostructured thin films: An easy way to tune magnetic and optical properties. Chem. Mater. 24, 1072 (2012).CrossRefGoogle Scholar
Xu, Q., Ihalainen, P., Smått, J.H., Määttänen, A., Sund, P., Wilén, C.E., and Peltonen, J.: Template-induced fabrication of nanopatterned polymeric films by inkjet printing. Appl. Surf. Sci. 313, 237 (2014).CrossRefGoogle Scholar
Määttänen, A., Ihalainen, P., Pulkkinen, P., Wang, S.X., Tenhu, H., and Peltonen, J.: Inkjet-printed gold electrodes on paper: Characterization and functionalization. ACS Appl. Mater. Interfaces 4, 955 (2012).CrossRefGoogle ScholarPubMed
Mougenot, M., Lejeune, M., Baumard, J.F., Boissière, C., Ribot, F., Grosso, D., Sanchez, C., and Noguera, R.: Ink jet printing of microdot arrays of mesostructured silica. J. Am. Ceram. Soc. 89(6), 1876 (2006).CrossRefGoogle Scholar
Fousseret, B., Mougenot, M., Rossignol, F., Baumard, J.F., Soulestin, B., Boissière, C., Ribot, F., Jalabert, D., Carrion, C., Sanchez, C., and Lejeune, M.: Inkjet-printing-engineered functional microdot arrays made of mesoporous hybrid organosilicas. Chem. Mater. 22, 3875 (2010).CrossRefGoogle Scholar
Singh, M., Haverinen, H.M., Dhagat, P., and Jabbour, G.E.: Inkjet printing—Process and its applications. Adv. Mater. 22, 673 (2010).CrossRefGoogle ScholarPubMed
Hansch, C., Leo, A., and Hoekman, D.: Exploring QSAR: Hydrophobic, Electronic, and Steric Constants (American Chemical Society, Washington DC, 1995); p. 25.Google Scholar
Mckarns, S.C., Hansch, C., Caldwell, W.S., Morgan, W.T., Moore, S.K., and Doolittle, D.J.: Correlation between hydrophobicity of short-chain aliphatic alcohols and their ability to alter plasma membrane integrity. Fundam. Appl. Toxicol. 36, 62 (1997).CrossRefGoogle ScholarPubMed
Faustini, M., Louis, B., Albouy, P.A., Kuemmel, M., and Grosso, D.: Preparation of sol–gel films by dip-coating in extreme conditions. J. Phys. Chem. C 114, 7637 (2010).CrossRefGoogle Scholar
Landau, L. and Levich, B.: Dragging of a liquid by a moving plate. Acta Physicochim. URSS 17, 42 (1942).Google Scholar
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., and Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827 (1997).CrossRefGoogle Scholar
Kuscer, D., Stavber, G., Trefalt, G., and Kosec, M.: Formulation of an aqueous titania suspension and its patterning with ink-jet printing technology. J. Am. Ceram. Soc. 95(2), 487 (2012).CrossRefGoogle Scholar
Martin, G.D. and Hutchings, I.M.: Fundamentals of inkjet technology. In Inkjet Technology for Digital Fabrication, Hutchings, I.M. and Martin, G.D. eds.; John Wiley & Sons, Ltd: Chichester, 2013; p. 23.Google Scholar
Dijksman, J.F. and Pierik, A.: Dynamics of piezoelectric print-heads. In Inkjet Technology for Digital Fabrication, Hutchings, I.M. and Martin, G.D. eds.; John Wiley & Sons, Ltd, Chichester, 2013; p. 61.Google Scholar
Duineveld, P.C.: The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J. Fluid Mech. 477, 175 (2003).CrossRefGoogle Scholar
Soltman, D. and Subramanian, V.: Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24, 2224 (2008).CrossRefGoogle ScholarPubMed
Stringer, J. and Derby, B.: Formation and stability of lines produced by inkjet printing. Langmuir 26(12), 10365 (2010).CrossRefGoogle ScholarPubMed
Moon, Y.J., Kang, H., Lee, S.H., Kang, K., Cho, Y.J., Hwang, J.Y., and Moon, S.J.: Effect of contact angle and drop spacing on the bulging frequency of inkjet-printed silver lines on FC-coated glass. J. Mech. Sci. Technol. 28(4), 1441 (2014).CrossRefGoogle Scholar
Kajihara, K. and Yao, T.: Macroporous morphology of the titania films prepared by a sol–gel dip-coating method from the system containing poly(ethylene glycol). III. Effect of chemical additives. J. Sol–Gel Sci. Technol. 16, 257 (1999).CrossRefGoogle Scholar
Fuertes, M.C. and Soler-Illia, G.J.A.A.: Processing of macroporous titania thin films: From multiscale functional porosity to nanocrystalline macroporous TiO2 . Chem. Mater. 18, 2109 (2006).CrossRefGoogle Scholar
Hu, H. and Larson, R.G.: Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110, 7090 (2006).CrossRefGoogle ScholarPubMed