Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-01T02:10:54.919Z Has data issue: false hasContentIssue false

Fabrication and characterization of novel bicrystalline ZnO nanowires

Published online by Cambridge University Press:  31 January 2011

Huizhao Zhuang*
Affiliation:
Institute of Semiconductors, Shandong Normal University, Jinan 250014, People's Republic of China
Hang Liu
Affiliation:
Institute of Semiconductors, Shandong Normal University, Jinan 250014, People's Republic of China
*
a) Address all correspondence this author. e-mail: zhuanghuizhao@sdnu.edu.cn
Get access

Abstract

Two types of novel bicrystalline ZnO nanowires have been synthesized by a thermal evaporation method. The morphology and microstructure of the nanowires have been extensively investigated. One type of the nanowires has agg twin boundary extending down its entire length with twinning plane and the zone axis. The other type is those nanowires with twin crystal-single crystal junction. The twin defects in the Sn-Zn alloy droplets in the initial growth process are proposed for interpreting the growth of these two kinds of bicrystalline nanowires.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Cao, H., Xu, J.Y., Zhang, D.Z., Chang, S.H., Ho, S.T., Seelig, E.W., Liu, X., and R.Chang, P.H.: Spatial confinement of laser light in active random media. Phys. Rev. Lett. 84, 5584 (2000).CrossRefGoogle ScholarPubMed
2Wang, J.S. and Lakin, K.M.: c-axis inclined ZnO piezoelectric shear wave films. Appl. Phys. Lett. 42, 352 (1983).CrossRefGoogle Scholar
3Pan, Z.W., Dai, Z.R., and Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 (2001).CrossRefGoogle ScholarPubMed
4Wu, Y.Y. and Yang, P.D.: Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165 (2001).CrossRefGoogle Scholar
5Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P.: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
6Ding, Y., Gao, P.X., and Wang, Z.L.: Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: A case of Sn/ZnO. J. Am. Chem. Soc. 126, 2066 (2004).CrossRefGoogle ScholarPubMed
7Wang, Z.L., Gao, R.P., Pan, Z.W., and Dai, Z.R.: Nano-scale mechanics of nanotubes, nanowires, and nanobelts. Adv. Eng. Mater. 3, 657 (2001).3.0.CO;2-0>CrossRefGoogle Scholar
8Dai, Z.R., Pan, Z.W., and Wang, Z.L.: Ultra-long single crystalline nanoribbons of tin oxide. Solid State Commun. 118, 351 (2001).CrossRefGoogle Scholar
9Han, Y.J., Kim, J.M., and Stucky, G.D.: Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15. Chem. Mater. 12, 2068 (2000).CrossRefGoogle Scholar
10Chen, C.C., Chao, C.Y., and Lang, Z.H.: Simple solution-phase synthesis of soluble CdS and CdSe nanorods. Chem. Mater. 12, 1516 (2000).CrossRefGoogle Scholar
11A. Bietsch and Michel, B.: Size and grain-boundary effects of a gold nanowire measured by conducting atomic force microscopy. Appl. Phys. Lett. 80, 3346 (2002).Google Scholar
12Dai, Y., Zhang, Y., Bai, Y.Q., and Wang, Z.L.: Bicrystalline zinc oxide nanowires. Chem. Phys. Lett. 375, 96 (2003).CrossRefGoogle Scholar
13Arnold, M., Avouris, P., Pan, Z.W., and Wang, Z.L.: Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 107, 659 (2003).CrossRefGoogle Scholar