Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-dkqnh Total loading time: 1.32 Render date: 2021-10-24T12:57:34.155Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Evolution of titanium dioxide one-dimensional nanostructures from surface-reaction-limited pulsed chemical vapor deposition

Published online by Cambridge University Press:  02 January 2013

Xudong Wang*
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706
Jian Shi
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706
*
a)Address all correspondence to this author. e-mail: xudong@engr.wisc.edu
Get access

Abstract

This paper reviews the recent development of surface-reaction-limited pulsed chemical vapor deposition (SPCVD) technique for the growth of TiO2 one-dimensional nanostructures. SPCVD uses separated TiCl4 and H2O precursor pulses, and the anisotropic growth of TiO2 crystals is attributed to the combined effects of surface recombination and HCl restructuring at high temperature during elongated purging time. Therefore, the crystal growth is effectively decoupled from precursor vapor concentration, which allows uniform growth of TiO2 nanorods (NRs) inside highly confined spaces. The phase of TiO2 NRs can be tuned from anatase to rutile by raising the deposition temperature. Au catalysts are able to enhance the growth rate and led to bifurcated nanowire (NW) morphology. A high density three-dimensional (3D) NW architecture was created by SPCVD growing TiO2NRs inside dense Si NW forests. Such 3D structures offer both large surface area and excellent charge transport property, which substantially improved the efficiency of photoelectrochemical devices.

Type
Reviews
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).CrossRefGoogle ScholarPubMed
Jiu, J.T., Isoda, S., Wang, F.M., and Adachi, M.: Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J. Phys. Chem. B 110, 2087 (2006).CrossRefGoogle ScholarPubMed
Khan, S.U.M., Al-Shahry, M., and Ingler, W.B.: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002).CrossRefGoogle ScholarPubMed
Liu, B. and Aydil, E.S.: Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009).CrossRefGoogle Scholar
Hwang, Y.J., Boukai, A., and Yang, P.D.: High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 9, 410 (2009).CrossRefGoogle Scholar
Adachi, M., Murata, Y., Takao, J., Jiu, J.T., Sakamoto, M., and Wang, F.M.: Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the tnq#x201C;oriented attachmenttnq#x201D; mechanism. J. Am. Chem. Soc. 126, 14943 (2004).CrossRefGoogle ScholarPubMed
Zuruzi, A.S., Kolmakov, A., MacDonald, N.C., and Moskovits, M.: Highly sensitive gas sensor based on integrated titania nanosponge arrays. Appl. Phys. Lett. 88, 102904 (2006).CrossRefGoogle Scholar
Armstrong, A.R., Armstrong, G., Canales, J., Garcia, R., and Bruce, P.G.: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005).CrossRefGoogle Scholar
Liu, J.W., Kuo, Y.T., Klabunde, K.J., Rochford, C., Wu, J., and Li, J.: Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays. ACS Appl. Mater. Interfaces 1, 1645 (2009).CrossRefGoogle ScholarPubMed
Ni, M., Leung, M.K.H., Leung, D.Y.C., and Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev. 11, 401 (2007).CrossRefGoogle Scholar
Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissortel, F., Salbeck, J., Spreitzer, H., and Gratzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).Google Scholar
Law, M., Greene, L.E., Radenovic, A., Kuykendall, T., Liphardt, J., and Yang, P.D.: ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 110, 22652 (2006).CrossRefGoogle ScholarPubMed
Greene, L.E., Law, M., Yuhas, B.D., and Yang, P.D.: ZnO-TiO2 core-shell nanorod/P3HT solar cells. J. Phys. Chem. C 111, 18451 (2007).CrossRefGoogle Scholar
Barnard, A.S. and Zapol, P.: Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals. J. Phys. Chem. B 108, 18435 (2004).CrossRefGoogle Scholar
Barnard, A.S. and Curtiss, L.A.: Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett. 5, 1261 (2005).CrossRefGoogle Scholar
Miao, Z., Xu, D.S., Ouyang, J.H., Guo, G.L., Zhao, X.S., and Tang, Y.Q.: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2, 717 (2002).CrossRefGoogle Scholar
Zhang, Y.X., Li, G.H., Jin, Y.X., Zhang, Y., Zhang, J., and Zhang, L.D.: Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 365, 300 (2002).CrossRefGoogle Scholar
Formo, E., Lee, E., Campbell, D., and Xia, Y.N.: Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett. 8, 668 (2008).CrossRefGoogle ScholarPubMed
Hosono, E., Fujihara, S., Kakiuchi, K., and Imai, H.: Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126, 7790 (2004).CrossRefGoogle ScholarPubMed
Bavykin, D.V., Friedrich, J.M., and Walsh, F.C.: Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 18, 2807 (2006).CrossRefGoogle Scholar
Yoshida, R., Suzuki, Y., and Yoshikawa, S.: Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J. Solid State Chem. 178, 2179 (2005).CrossRefGoogle Scholar
Chen, G.Y., Lee, M.W., and Wang, G.J.: Fabrication of dye-sensitized solar cells with a 3D nanostructured electrode. Int. J. Photoenergy 2010, 585621 (2010).CrossRefGoogle Scholar
Feng, X.J., Shankar, K., Varghese, O.K., Paulose, M., Latempa, T.J., and Grimes, C.A.: Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 8, 3781 (2008).CrossRefGoogle ScholarPubMed
Wu, J.M., Shih, H.C., Wu, W.T., Tseng, Y.K., and Chen, I.C.: Thermal evaporation growth and the luminescence property of TiO2 nanowires. J. Cryst. Growth 281, 384 (2005).CrossRefGoogle Scholar
Amin, S.S., Nicholls, A.W., and Xu, T.T.: A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures. Nanotechnology 18, 445609 (2007).CrossRefGoogle Scholar
Ha, J.Y., Sosnowchik, B.D., Lin, L.W., Kang, D.H., and Davydov, A.V.: Patterned growth of TiO2 nanowires on titanium substrates. Appl. Phys. Express 4, 065002 (2011).CrossRefGoogle Scholar
Kim, M.H., Baik, J.M., Zhang, J.P., Larson, C., Li, Y.L., Stucky, G.D., Moskovits, M., and Wodtke, A.M.: TiO2 nanowire growth driven by phosphorus-doped nanocatalysis. J. Phys. Chem. C 114, 10697 (2010).CrossRefGoogle Scholar
Pradhan, S.K., Reucroft, P.J., Yang, F.Q., and Dozier, A.: Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83 (2003).CrossRefGoogle Scholar
Shi, J., Sun, C.L., Starr, M.B., and Wang, X.D.: Growth of titanium dioxide nanorods in 3D-confined spaces. Nano Lett. 11, 624 (2011).CrossRefGoogle ScholarPubMed
George, S.M.: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).CrossRefGoogle ScholarPubMed
Danon, A., Bhattacharyya, K., Vijayan, B.K., Lu, J.L., Sauter, D.J., Gray, K.A., Stair, P.C., and Weitz, E.: Effect of reactor materials on the properties of titanium oxide nanotubes. ACS Catal. 2, 45 (2012).CrossRefGoogle Scholar
Shi, J., Hara, Y., Sun, C.L., Anderson, M.A., and Wang, X.D.: Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. Nano Lett. 11, 3413 (2011).CrossRefGoogle ScholarPubMed
Ritala, M., Leskela, M., Nykanen, E., Soininen, P., and Niinisto, L.: Growth of titanium dioxide thin films by atomic layer epitaxy. Thin Solid Films 225, 288 (1993).CrossRefGoogle Scholar
Shi, J. and Wang, X.: Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des. 11, 949 (2011).CrossRefGoogle Scholar
Takabayashi, S., Nakamura, R., and Nakato, Y.: A nano-modified Si/TiO2 composite electrode for efficient solar water splitting. J. Photochem. Photobiol., A 166, 107 (2004).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evolution of titanium dioxide one-dimensional nanostructures from surface-reaction-limited pulsed chemical vapor deposition
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Evolution of titanium dioxide one-dimensional nanostructures from surface-reaction-limited pulsed chemical vapor deposition
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Evolution of titanium dioxide one-dimensional nanostructures from surface-reaction-limited pulsed chemical vapor deposition
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *