Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-s5ssh Total loading time: 0.163 Render date: 2021-06-20T02:13:16.240Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Effects of radiation on SiC-based Nicalon fibers

Published online by Cambridge University Press:  03 March 2011

L.L. Snead
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6087
M. Osborne
Affiliation:
Rensselaer Polytechnic Institute, Troy. New York 12180
K.L. More
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6087
Get access

Abstract

This paper presents neutron and ion radiation effects in the Nicalon SiC polymer precursor fiber. It is shown that the serious structural degradation of this fiber and its composites (e.g., CVD SiC/Nicalon) previously reported for the standard grade of Nicalon is primarily due to the presence of the silicon oxycarbide phase. Results supporting this interpretation include microstructural analysis as well as post irradiation mechanical property measurements. Preliminary results of the effects of irradiation on low-oxygen Nicalon fibers are presented. The reduced oxygen content fibers exhibit radiation-induced density, strength, and Weibull's and Young's moduli changes typical of monolithic ceramic materials. This contrasts sharply with the poor irradiation behavior of the standard Nicalon fiber and suggests that improved radiation resistance can be expected in SiC/SiC composites fabricated with low oxygen Nicalon fibers.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below.

References

1The ARIES-1 Tokamak Reactor Study, Final Report, UCLA-PPG1323 (1991).Google Scholar
2Lowden, R. A., ORNL/TM-11039 (March 1989).Google Scholar
3AVCO SCS-6 fiber is a tradename of the Textron Corporation, Lowell, MA.Google Scholar
4Final Report. SBIR Phase 1 Contract No DEFG02-92ER 81271, May 27, 1993. Materials Electrochemical Research Corporation.Google Scholar
5Snead, L. L. and Schwarz, O. J., J. Nucl. Mater. (1995, in press).Google Scholar
6MER Corporation, Tucson, AZ.Google Scholar
7Yajima, S., Hayashi, J., and Omori, M., Chem. Lett. 9, 931 (1975).CrossRefGoogle Scholar
8Nicalon is a tradename of the Nippon Carbon Corporation, Japan.Google Scholar
9Yajima, S., Okamura, K., Matsuzawa, T., Hasegawa, Y., and Shishido, T., Nature 297, 706 (1979).CrossRefGoogle Scholar
10Simon, G. and Bunsell, A. R., J. Mater. Sci. 19, 36493657 (1984).CrossRefGoogle Scholar
11Macey, C. J., Scanning Electron Microscopy (SEM Inc., AMF O'Hare, Chicago, 1984), Vol. IV, p. 1643.Google Scholar
12Yajima, S., Tanaka, J., Okamura, K., Ichikawa, H., and Hayase, T., Rev. Chim. Min. 18, 412 (1981).Google Scholar
13Porte, L. and Sartre, A., J. Mater. Sci. 24, 271275 (1989).CrossRefGoogle Scholar
14Laffon, C., Flank, A. M., Lagarde, P., Laridjani, M., Hagege, R., Olry, P., Cotteret, J., Dixmier, J., Miquel, J. L., Hommel, H., and Legrand, A. P., J. Mater. Sci. 24, 15031512 (1989).CrossRefGoogle Scholar
15Johnson, S. M., Brittain, R. D., Lomoreaux, R. H., and Rowcliffe, D. J., J. Am. Ceram. 71 (3), C132-135 (1988).Google Scholar
16West, R., David, L. D., Djurovich, P. I., Yu, H., and Sinclair, R., Bull Am. Ceram. Soc. 62, 899 (1989).Google Scholar
17Wynne, K. J. and Price, R. W., Ann. Rev. Mater. Sci. 14, 297 (1984).CrossRefGoogle Scholar
18Seguchi, T., Kasai, N., and Okamura, K., Proc. Int. Conf. on Evolution in Beam Applications, Nov. 5-8, Japan (1991).Google Scholar
19Okamura, K. and Seguchi, T., J. Inorg. Organometallic Polymers 2 (1), 171179 (1992).CrossRefGoogle Scholar
20Besmann, T. M., Stinton, D. P., and Lowden, R. A., Proc. Seventh European Conf. on Chemical Vapor Deposition, J. de Phys. 50 (Conf-C-5), 229239 (May 1988).Google Scholar
21Lewis, M. B., Allen, W. R., Buhl, R. A., Packan, N. H., Cook, S. W., and Mansur, L. K., Nucl. Instrum. Methods in Phys. Res. B 43, 243253 (1989).CrossRefGoogle Scholar
22Manning, I. and Mueller, G. P., Comput. Phys. Commun. 7, 85 (1974).CrossRefGoogle Scholar
23Zinkle, S. J., Haltom, C. P., Jenkins, L. C., and Dubose, C.K.H., J. Elect. Microscopy Tech. 19, 452460 (1991).CrossRefGoogle Scholar
24Ultimage is a trademark of Graftek, France.Google Scholar
25Nanoindenter is a trademark of the Nanolnstruments Corporation, Knoxville, TN.Google Scholar
26Snead, L. L., Fus. Tech. 24 (1), 6582 (1993).Google Scholar
27Snead, L. L., Zinkle, S. J., and Steiner, D., J. Nucl. Mater. 191–194, 566570 (1992).CrossRefGoogle Scholar
28Snead, L. L., Zinkle, S. J., and Steiner, D., J. Nucl. Mater. 191–194, 560565 (1992).CrossRefGoogle Scholar
29Okamura, K., Matsuzawa, T., Sata, M., Kayano, H., Morozumi, S., Tezuka, H., and Kohyama, A., J. Nucl. Mater. 155–157, 329333 (1988).CrossRefGoogle Scholar
30Ferguson, I. F., Philos. Mag. 10, 635636 (1967).CrossRefGoogle Scholar
31Price, R. J., J. Nucl. Mater. 33, 1722 (1969).CrossRefGoogle Scholar
32Blackstone, R. and Voice, E. H., J. Nucl. Mater. 39, 319322 (1971).CrossRefGoogle Scholar
33Stevens, R., Philos. Mag. 25, 523528 (1971).CrossRefGoogle Scholar
34Price, R. J., Nucl. Tech. 16, 536542 (1972).CrossRefGoogle Scholar
35Price, R. J., J. Nucl. Mater. 48, 4757 (1973).CrossRefGoogle Scholar
36Matthews, R. B., J. Nucl. Mater. 51, 203208 (1974).CrossRefGoogle Scholar
37Harrison, S. D. and Corelli, J. C., J. Nucl. Mater. 99, 203212 (1981).CrossRefGoogle Scholar
38Price, R. J., Hopkins, G. R., and Engle, G. B., 17th Biennial Conf. on Carbon, June 16–21 (1985) pp. 348349.Google Scholar
39Suzuki, T., Yano, T., Maruyama, T., and Iseki, T., J. Nucl. Mater. 165, 247251 (1989).CrossRefGoogle Scholar
40Iseki, T., Maruyamam, T., Yano, T., Suzuki, T., and Mori, T., J. Nucl. Mater. 170, 95100 (1990).CrossRefGoogle Scholar
41Williams, J. M., McHargue, C.J., and Appleton, B.R., Nucl. Instrum. Methods 209/210, 317323 (1983).CrossRefGoogle Scholar
42Yano, T. and Iseki, T., Philos. Mag. 62 (4), 421430 (1990).CrossRefGoogle Scholar
43Kinoshita, C., J. Atom Energy Soc. Jpn. 28, 1009 (1986).CrossRefGoogle Scholar
44Matsunaga, A., Kinoshita, C., Nakai, K., and Tomikiyo, Y., J. Nucl. Mater. 179–181, 457460 (1991).CrossRefGoogle Scholar
45Bohn, H. G., Williams, J. M., McHargue, C.J., and Begun, G.M., J. Mater. Res. 2, 107116 (1987).CrossRefGoogle Scholar
46Kohyama, A., Tezuka, H., and Saito, S., J. Nucl. Mater. 155–157, 334339 (1988).CrossRefGoogle Scholar
47Kohyama, A., Sata, S., and Hamada, K., in ASTM1125 15th ASTM Int. Symp. on Effects of Radiaton on Materials, Nashville, TN (1990), pp. 785796.Google Scholar
48Kohyama, A., Tezuka, H., and Saito, S., in Interfaces in Polymer, Ceramic, and Metal Matrix Composites, edited by Ishida, H. (Elsevier Science Publishing Co., Inc., New York, 1988).Google Scholar
49White, C. W., Mater. Sci. Rep. 4 (2.3), 41146 (1989).CrossRefGoogle Scholar
50Matheny, R. A., Corelli, J. C., and Trantina, G. G., J. Nucl. Mater. 83, 313321 (1979).CrossRefGoogle Scholar
51Kircher, J. F. and Bowman, R. E., Effects of Radiation on Materials and Components (Reinhold Publishing, New York, 1964), p. 277.Google Scholar
52Lell, E., in Progress in Ceramic Science, edited by Burke, J. E., (Pergamon Press, Oxford, 1966), Vol. 4.Google Scholar
53Primak, W. and Edwards, E., Phys. Rev. 128, 2580 (1962).CrossRefGoogle Scholar
54Wittels, M. C. and Sherrill, F. A., Phys. Rev. 93, 11171118 (1954).CrossRefGoogle Scholar
55Primak, W., Fuchs, L. H., and Day, P., Phys. Rev. 92, 10641065 (1953).CrossRefGoogle Scholar
56Primak, W., Fuchs, L. H., and Day, P., J. Am. Ceram. Soc. 38, 135139 (1955).CrossRefGoogle Scholar
57Billington, D. and Crawford, J. H., Radiation Damage in Solids (Princeton University Press, Princeton, NJ, 1961).Google Scholar
58Hines, R. L., J. Appl. Phys. 28, 587591 (1957).CrossRefGoogle Scholar
59Primak, W., J. Appl. Phys. 35, 13421347 (1962).CrossRefGoogle Scholar
60Bishay, A. M., Am. Ceram. Soc. 44, 289296 (1961).CrossRefGoogle Scholar
61Garino-Canina, V., Verr et Refract. 12, 313323 (1958).Google Scholar
62Culler, V., Proc. Seventh Hot Laboratory and Equipment Conference, Cleveland, OH (1959), pp. 119128.Google Scholar
63Stevens, D. K., Sturm, W. J., and Silsbee, R. H., J. Appl. Phys. 29, 6668 (1958).CrossRefGoogle Scholar
64Primak, W. and Edwards, E., Phys. Rev. 133 (2A), A531535 (1964).CrossRefGoogle Scholar
65Simon, I., Phys. Rev. 103, 1587 (1956).CrossRefGoogle Scholar
66Simon, I., J. Am. Ceram. Soc. 40, 150 (1957).CrossRefGoogle Scholar
67Okamura, K., Matsuzawa, T., Sato, M., Higashiguchi, Y., and Morozumi, S., J. Nucl. Mater. 133–134, 705 (1985).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of radiation on SiC-based Nicalon fibers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effects of radiation on SiC-based Nicalon fibers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effects of radiation on SiC-based Nicalon fibers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *