Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-01T20:01:48.316Z Has data issue: false hasContentIssue false

Effects of Nd123/MgO Thin Film and MgO Single-crystal Seeds in Isothermal Solidification of YBaCuO/Ag

Published online by Cambridge University Press:  31 January 2011

Chuanbing Cai*
Affiliation:
Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo 185-8540, Japan
Hiroyuki Fujimoto
Affiliation:
Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo 185-8540, Japan
*
a)Address all correspondence to this author. e-mail: cai@rtri.or.jp
Get access

Abstract

The seeding effects of (001) Nd123/MgO thin films and MgO single crystals were studied in isothermal solidification of YBa2Cu3Oy composite with the additions of 40 mol% Y2BaCuO5, 10 wt% Ag, and 0.5 wt% Pt. Seeding with the Nd123/MgO thin film resulted in single-domain growth of Y123 crystal with a stable growth along the “100”?direction, while seeding with MgO single crystal produced multidomain growth in which the dominant growth facet is rotated 45° about (100) plane of MgO. Multidomain growth in MgO seeded sample was suppressed by decreasing undercooling degree. The effects of undercooling degree and seed size on multidomain growth are discussed in view of classical nucleation and growth theory.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murakami, M., Melt Processed High-Temperature Superconductors (World Scientific, Singapore, 1992), pp. 21, 68, 211, 309, 334.Google Scholar
2.Meng, R.L., Gao, L., Gautier-Picard, P., Ramirez, D., Sun, Y.Y., and Chu, C.W., Physica C 232, 337 (1994).CrossRefGoogle Scholar
3.Cardwell, D.A., Lo, W., Thorpe, H.D.E, and Roberts, A., J. Mater. Sci. Lett. 14, 1444 (1995).CrossRefGoogle Scholar
4.Shiohara, Y. and Endo, A., Mater. Sci. Eng. R19, 33, 38, 55 (1997).Google Scholar
5.Chow, J.C.L, Leung, H-T., Lo, W., and Cardwell, D.A., Supercond. Sci. Technol. 11, 369 (1998).CrossRefGoogle Scholar
6.Marinel, S., Wang, J., Monot, I., Delamare, M.P., Provost, J., and Desgardin, G., Supercond. Sci. Technol. 10, 147 (1997).CrossRefGoogle Scholar
7.Nakamura, Y., Tachibana, K., Kato, S., Ban, T., Yoo, S.I., and Fujimoto, H., Physica C 294, 302 (1998).CrossRefGoogle Scholar
8.Nakamura, Y., Tachibana, K., and Fujimoto, H., Physica C 306, 259 (1998).CrossRefGoogle Scholar
9.Kohayashi, S., Yoshizawa, S., Miyairi, H., Nakane, H., and Nagaya, S., Mater. Sci. Eng., B 53, 70 (1998).CrossRefGoogle Scholar
10.Morita, M., Takebayashi, S., Tanaka, M., and Kimura, K., Adv. Supercond. 3, 733 (1991).Google Scholar
11.Yoo, S.I., Takebayashi, S., Hayashi, N., Nagashima, K., Sakai, N., and Murakami, M., Adv. Supercond. 10, 697 (1997).Google Scholar
12.Todt, V.R., Zhang, X.F., and Miller, D.J., IEEE Trans. Appl. Supercond. 7, 1801 (1997).CrossRefGoogle Scholar
13.Todt, V.R., Sengupta, S., and Miller, D.J., Appl. Supercond. 3, 175 (1995).CrossRefGoogle Scholar
14.Chen, I.G., Jamn, G., and Hsu, J.C., Mater. Sci. Eng., B 53, 132 (1998).CrossRefGoogle Scholar
15.Dewhurst, C.D., Lo, W., Shi, Y.H., and Cardwell, D.A., Mater. Sci. Eng., B 53, 169 (1998).Google Scholar
16.Diko, P., Wende, C., Litzkendorf, D., Klupsch, T., and Gawalek, W., Supercond. Sci. Technol. 11, 49 (1998).CrossRefGoogle Scholar
17.Vandewalle, N., Supercond. Sci. Technol. 11, 35 (1998).CrossRefGoogle Scholar
18.Monot, I., Wang, J., Delamare, M.P., Provost, J., and Desgardin, G., Physica C 267, 173 (1996).CrossRefGoogle Scholar
19.Cai, C., Tachiki, M., Fujii, T., and Kobayashi, T. (unpublished).Google Scholar
20.Zhang, X.F., Supercond. Sci. Technol. 11, 1391 (1998).CrossRefGoogle Scholar
21.Krauns, Ch., Tagami, M., Sumida, M., Yamada, Y., and Shiohara, Y., Adv. Supercond. 6, 767 (1994).CrossRefGoogle Scholar
22.Yao, X. and Shiohara, Y., Mater. Sci. Eng., B 53, 11 (1998).CrossRefGoogle Scholar
23.Komatsu, T., Meguro, H., Sato, R., Tanaka, O., Matusita, K., and Yamashita, T., Jpn. J. Appl. Phys. 27, L2063 (1988).CrossRefGoogle Scholar
24.Tiernan, W.M., Hallock, R.B., Chien, J.C.W, and Gong, B.M., Phys. Rev. B: Solid State 44, 4661 (1991).CrossRefGoogle Scholar
25.Flemings, M.C., Solidification Processing (McGraw-Hill, USA, 1974), p. 290.Google Scholar
26.Probstein, R.F., J. Chem. Phys. 19, 619 (1951).CrossRefGoogle Scholar
27.Ramesh, R., Hwang, D.M., Venkatesan, T., Ravi, T.S., Inam, A., Dutta, B., Wu, X.D., and Venkatesan, T., J. Mater. Res. 5, 704 (1990).CrossRefGoogle Scholar
28.Suzuki, M., Sakurai, H., Sakurai, T., Nagano, M., and Wakiya, Y., Adv. Supercond. 8, 969 (1996).Google Scholar
29.Michikami, O., Asahi, M., and Asano, H., Jpn. J. Appl. Phys. 29, L298 (1990).CrossRefGoogle Scholar
30.Vuchic, B.V., Merkle, K.L., Funkhouser, J.W., Buchholz, D.B., Dean, K.A., Chang, R.P.H, and Marks, L.D., IEEE Trans. Appl. Supercond. 5, 1225 (1995).CrossRefGoogle Scholar
31.Ishida, Y., Kimura, T., Kakimoto, K., Yamada, Y., Nakagawa, Z., Shiorhara, Y., and Sawaoka, A.B., Physica C 292, 264 (1997).CrossRefGoogle Scholar
32.Hwang, D.M., Ravi, T.S., Ramesh, R., Chen, S.W., Chen, C.Y., Wu, X.D., Inam, A., and Venkatesan, T., Appl. Phys. Lett. 57, 1690 (1990).CrossRefGoogle Scholar