Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-16T07:33:02.367Z Has data issue: false hasContentIssue false

Direct thermal oxidization evaporation growth, structure, and optical properties of single-crystalline nanobelts of molybdenum trioxide

Published online by Cambridge University Press:  31 January 2011

W.G. Chu*
Affiliation:
National Center for Nanoscience and Technology of China, Beijing 100084, People’s Republic of China; and Tsinghua-Foxconn Nanotechnology Research Center, Beijing 100084, People’s Republic of China
L.N. Zhang
Affiliation:
Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China; and Tsinghua-Foxconn Nanotechnology Research Center, Beijing 100084, People’s Republic of China
H.F. Wang
Affiliation:
National Center for Nanoscience and Technology of China, Beijing 100084, People’s Republic of China
Z.H. Han
Affiliation:
Tsinghua-Foxconn Nanotechnology Research Center, Beijing 100084, People’s Republic of China
D. Han
Affiliation:
National Center for Nanoscience and Technology of China, Beijing 100084, People’s Republic of China
Q.Q. Li
Affiliation:
Tsinghua-Foxconn Nanotechnology Research Center, Beijing 100084, People’s Republic of China; and Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China
S.S. Fan
Affiliation:
Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China; and Tsinghua-Foxconn Nanotechnology Research Center, Beijing 100084, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: wgchu@nanoctr.cn
Get access

Abstract

Single-crystalline nanobelts of molybdenum trioxides were grown by direct thermal oxidization evaporation of metal molybdenum foils. Their structures, defects, and optical properties were investigated via x-ray diffraction, field-emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), atomic force microscopy, micro-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and ultraviolet-visible spectroscopy (UV-VIS). Single-crystalline nanobelts were identified as an orthorhombic structure with an average stoichiometry of MoO3.02analyzed by energy dispersive spectroscopy of x-rays. The length, width, and thickness of a nanobelt were determined to be parallel to the b, c, and aaxis of the MoO3unit cell, respectively. The thickness of the nanobelt increased by integer multiples of 0.5ain a layer-by-layer fashion during growth. A density of dislocations as high as about 1.2 × 1013cm−2was formed, which may be attributed to relaxation of large strains during cooling. A special dislocation configuration was observed by HRTEM, which was well reproduced by image simulations based on the proposed model. The resulting morphology of nanobelts was proposed to be governed by growth kinetics. Micro-Raman and FTIR spectra were successfully analyzed on the basis of vibration of MoO6octahedra. It was found that micro-Raman spectra were quite dependent on the size of the nanobelts. A band gap energy of 3.04 eV derived from UV-VIS measurements was observed to be red shifted relative to the previously reported experimental values, which may be due to the presence of a high density of defects.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mestle, G.: MoVW mixed metal oxides catalysts for acrylic acid production: From industrial catalysts to model studies. Top. Catal. 38, 69 2006CrossRefGoogle Scholar
2Miyata, N., Suzuki, T.Ohyama, R.: Physical properties of evaporated molybdenum oxide films. Thin Solid Films 282, 218 1996CrossRefGoogle Scholar
3Ajito, K., Nagahara, L.A., Tryk, D.A., Hashimoto, K.Fujishima, A.: Study of the photochromic properties of amorphous MoO3films using Raman microscopy. J. Phys. Chem. 99, 16383 1995CrossRefGoogle Scholar
4Ozin, G.A., Özkar, S.Prokopowicz, R.A.: Smart zeolites: New forms of tungsten and molybdenum oxides. Acc. Chem. Res. 25, 553 1992CrossRefGoogle Scholar
5Hamelmann, F., Gesheva, K., Ivanova, T., Szekeres, A., Abroshev, M., Heinzmann, L.: Optical and electrochromic characterization of multilayered mixed metal oxide thin films. J. Optoelectr and Adv. Mater. 7, 393 2005Google Scholar
6Wang, J.F., Rose, K.C.Lieber, C.M.: Load-independent friction: MoO3nanocrystal lubricants. J. Phys. Chem. B 103, 8405 1999Google Scholar
7Li, X.L., Liu, J.F.Li, Y.D.: Low-temperature synthesis of large-scale single-crystal molybdenum trioxide. MoO3nanobelts. Appl. Phys. Lett. 81, 4832 2002CrossRefGoogle Scholar
8Patzke, G.R., Michailovski, A., Krumeich, F., Nesper, R., Grunwaldt, J.D.Baiker, A.: One-step synthesis of submicrometer fibers of MoO3. Chem. Mater. 16, 1126 2004Google Scholar
9Lou, X.W.Zeng, H.C.: Hydrothermal synthesis of a-MoO3nanorods via acidification of ammonium heptamolybdate tetrahydrate. Chem. Mater. 14, 4781 2002CrossRefGoogle Scholar
10Song, R.Q., Wu, A.W., Deng, B.Fang, Y.P.: Novel, multilamellar mesostructured molybdenum oxide nanofibers and nanobelts: Synthesis and characterization. J. Phys. Chem. B 109, 22758 2005CrossRefGoogle ScholarPubMed
11Li, Y.B.Bando, Y.: Quasi-aligned MoO3nanotubes grown on Ta substrate. Chem. Phys. Lett. 364, 484 2002CrossRefGoogle Scholar
12Tarsame, S.S.Reddy, G.B.: Effect of size and valency of intercalant ions on optical properties of polycrystalline MoO3films. J. Electrochem. Soc. 152, A2323 2005Google Scholar
13Negishi, H., Negishi, S., Kuroiwa, Y., Sato, N.Aoyagi, S.: Anisotropic thermal expansion of layered MoO3crystals. Phys. Rev. B 69, 064111 2004CrossRefGoogle Scholar
14Kuroiwa, Y., Sato, N., Sawada, A., Negishi, S., Negishi, H.Aoyagi, S.: Electron charge density study on the bonding nature in MoO3. J. Phys. Soc. Jpn. 72, 2813 2003Google Scholar
15Coquet, R.Willock, D.J.: The (010) surface of a-MoO3, a DFT t U study. Phys. Chem. Chem. Phys. 7, 3819 2005Google Scholar
16Wyckoff, R.W.G.: Crystal Structures,Vol. 2, Inorganic Compounds (Interscience Publishers, New York, 1964)Google Scholar
17Ganapathi, L., Ramanan, A., Gopalakrishman, J.Rao, C.N.R.: A study of MoO3, WO3, and their solid solutions prepared by topotactic dehydration of the monohydrates. J. Chem. Soc. Chem. Commun.62 1986Google Scholar
18Chen, M., Friend, C.M.Kaxiras, E.: The chemical nature of surface point defects on MoO3(010): Adsorption of hydrogen and methyl. J. Am. Chem. Soc. 123, 2224 2001CrossRefGoogle ScholarPubMed
19Gruber, H.Krautz, E.: Study of electrical conductivity and magnetoresistance in the MoOxsystems. Phys. Status Solidi A 62, 615 1980Google Scholar
20Papakondylis, A.Sautet, P.: Ab initio study of the structure of the αMoO3solid and study of the adsorption of H2O and CO molecules on its (100) surface. J. Phys. Chem. 100, 10681 1996Google Scholar
21Langford, J.I.Wilson, A.J.C.: Seherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 1978Google Scholar
22Mašek, K., Nehasil, V.Matolín, V.: RHEED study of Au/KCL system for estimation of the dependence of diffraction spot profiles on the particle size. Fizika A 4, 295 1995Google Scholar
23Rozzi, C.A.Manghi, F.: Ab initio Fermi surface and conduction-band calculations in oxygen-reduced MoO3. Phys. Rev. B 68, 075106 2003Google Scholar
24Ronning, C., Gao, P.X., Ding, Y., Wang, Z.L.Schwen, D.: Manganese doped ZnO nanobelts for spintronics. Appl. Phys. Lett. 84, 783 2004CrossRefGoogle Scholar
25Ding, Y.Wang, Z.L.: Structure analysis of nanowires and nanobelts by transmission electron microscopy. J. Phys. Chem. 108, 12280 2004Google Scholar
26Ding, Y., Kong, X.Y.Wang, Z.L.: Doping and planar defects in the formation of single-crystal ZnO nanorings. Phys. Rev. B 70, 235408 2004Google Scholar
27Cowley, J.M.Moodie, A.: The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 10, 609 1957Google Scholar
28Bursill, L.A.: Crystallographic shear in molybdenum trioxide. Proc. R. Soc. London Ser. A 311, 267 1969Google Scholar
29Wang, D., Su, D.S.Schlögl, R.: Crystallographic shear defect in molybdenum oxides: Structure and TEM of molybdenum sub-oxides Mo18O52and Mo8O23. Cryst. Res. Technol. 38, 153 2003Google Scholar
30Zangwill, A.: Physics at Surfaces(Cambridge University Press, Cambridge, UK, 1990), Chap. 15, p. 400Google Scholar
31Py, M.A., Schmid, P.E.Vallin, J.T.: Raman scattering and structural properties of MoO3. Nuovo Cimento 38, B 271 1977CrossRefGoogle Scholar
32Py, M.A.Maschke, K.: Intra- and interlayer contribution to the lattice vibrations in MoO3. Physica B 105, B 370 1981CrossRefGoogle Scholar
33Dieterle, M., Weinberg, G.Mestl, G.: Structural characterization of oxygen defects in MoO3−xby DR UV/VIS, Raman spectroscopy and x-ray diffraction. Phys. Chem. Chem. Phys. 4, 812 2002Google Scholar
34Seong, M.J., Mićić, O.I., Nozik, A.J., Mascarenhas, A.Cheong, H.M.: Size-dependent Raman study of InP quantum dots. Appl. Phys. Lett. 82, 185 2003Google Scholar
35Scamarcio, G., Spagnolo, V., Ventruti, G., Lugará, M.Righini, G.C.: Size dependence of electron–LO-phonon coupling in semiconductor nanocrystals. Phys. Rev. B 53, R10489 1996Google Scholar
36Mestl, G., Verbruggen, N.F.D., Bosch, E.Knözinger, H.: Mechanically activated MoO3. 5. Redox Behavior. Langmuir 12, 2961 1996Google Scholar
37Mestl, G., Ruiz, P., Delmon, B.Knözinger, H.: Oxygen-exchange properties of MoO3: An in situ Raman spectroscopy study. J. Phys. Chem. 98, 11269 1994Google Scholar
38Dieterle, M.Mestl, G.: Resonance Raman spectroscopic characterization of the molybdenum oxides Mo4O11and MoO2. Phys. Chem. Chem. Phys. 4, 822 2002CrossRefGoogle Scholar
39Nazri, G.A.Julien, C.: Far-infrared and Raman studies of orthorhombic MoO3single crystal. Solid State Ionics 53–56, 376 1992CrossRefGoogle Scholar
40Xia, T., Li, Q., Liu, X.D., Meng, J.Cao, X.Q.: Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide. J. Phys. Chem. B 110, 2006 2006Google Scholar
41Guzman, G., Yebka, B., Livage, J.Julien, C.: Lithium intercalation studies in hydrated molybdenum oxides. Solid State Ionics 86–88, 407 1996Google Scholar
42Neeraj, S., Kijima, N.Cheetham, A.K.: Novel red phosphors for solid-state lighting: The system NaM(WO4)2−x(MoO4)x:Eu3+(M = Gd, Y, Bi). Chem. Phys. Lett. 2, 387 2004Google Scholar
43Toyoda, T., Nakanishi, H., Endo, S.Irie, T.: Fundamental absorption edge in the semiconductors CdInGaS4at high temperatures. J. Phys. D Appl. Phys. 18, 747 1985CrossRefGoogle Scholar
44Deb, S.K.Physical properties of a transition metal oxide: Optical and photoelectric properties of single crystal and thin film molybdenum trioxide. Proc. R. Soc. A, 304, 211 1968Google Scholar
45Itoh, M., Hayakawa, K.Oishi, S.: Optical properties and electronic structures of layered MoO3single crystals. J. Phys. Condens. Matter. 13, 6853 2001Google Scholar
46Dai, L., Chen, X.L., Zhang, X.N., Lin, A.Z., Zhou, T., Hu, B.Q.Zhang, Z.: Growth and optical characterization of Ga2O3nanobelts and nanosheets. J. Appl. Phys. 92, 1062 2002Google Scholar