No CrossRef data available.
Published online by Cambridge University Press: 11 June 2013
Copper (I) oxide (Cu2O) is a direct band gap semiconductor with p-type conductivity and is a potential candidate for multi-junction solar cells. In this work, incoherent light source based photo-assisted metal-organic chemical vapor deposition (MOCVD) was used to deposit high quality Cu2O thin films on n-type <100> silicon and quartz substrates. X-ray diffraction studies reveal that crystalline Cu2O is deposited. UV-Vis-NIR spectroscopy results indicated a band gap of 2.44 eV for Cu2O thin films. Transmission electron spectroscopy results show that the Cu2O film grows in the form of three-dimensional islands composed of smaller nanocrystalline grains in the range of 10–20 nm. I–V measurements indicate that the Cu2O/n-Si device fabricated using the MOCVD process has a lower dark current density than other devices reported in the literature.