Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T04:52:17.015Z Has data issue: false hasContentIssue false

Decreased thermal conductivity in Bi2Sr2Co2Ox bulk materials prepared by partial melting

Published online by Cambridge University Press:  18 April 2016

Emmanuel Combe
Affiliation:
Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan
Ryoji Funahashi*
Affiliation:
Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan
Tristan Barbier
Affiliation:
Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan
Feridoon Azough
Affiliation:
Material Science Center, School of Materials, University of Manchester, Grosvenor Street, Manchester M13 9PL, UK
Robert Freer
Affiliation:
Material Science Center, School of Materials, University of Manchester, Grosvenor Street, Manchester M13 9PL, UK
*
a)Address all correspondence to this author. e-mail: funahashi-r@aist.go.jp
Get access

Abstract

Bi2Sr2Co2Ox (BSC-222) bulk materials have been prepared in air by single hot pressing or partial melting followed by hot pressing. Thermal transport properties of as-prepared samples were compared with BSC-222 samples prepared by single partial melting. Samples prepared through hot pressing have a high bulk density and improved preferential grain orientation. Bulk density and preferential grain orientation are significantly better in samples processed by partial melting followed by hot pressing. In samples prepared by partial melting, the presence of sub-micrometer-sized secondary phases Bi0.75Sr0.25Ox, Sr-based oxide, and CoO, is observed. The lattice contribution to the total thermal conductivity decreases significantly in partially melted BSC-222 samples. By using a classical phonon transport model, this result demonstrates that the decrease in lattice thermal conductivity in partially melted BSC-222 samples may be linked not only to porosity but also to the presence of defects, induced by partial melting process, which may play an important role in phonon scattering.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Terasaki, I., Sasago, Y., and Uchinokura, K.: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 56(20), 12685 (1997).Google Scholar
Funahashi, R., Urata, S., Mizuno, K., Kouuchi, T., and Mikami, M.: Ca2.7Bi0.3Co4O9/La0.9Bi0.1NiO3 thermoelectric devices with high output power density. Appl. Phys. Lett. 85, 1036 (2004).Google Scholar
Koumoto, K., Funahashi, R., Guilmeau, E., Miyazaki, Y., Weidenkaff, A., Wang, Y., and Wan, C.: Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96(1), 1 (2013).Google Scholar
Funahashi, R. and Shikano, M.: Bi2Sr2Co2O y whiskers with high thermoelectric figure of merit. Appl. Phys. Lett. 81(8), 1459 (2002).Google Scholar
Leligny, H., Grebille, D., Perez, O., Masset, A.C., Hervieu, M., and Raveau, B.: A five-dimensional structural investigation of the misfit layer compound. Acta Crystallogr., Sect. B: Struct. Sci. 56, 173 (2000).Google Scholar
Funahashi, R., Matsubara, I., and Sodeoka, S.: Thermoelectric properties of Bi2Sr2Co2O x polycrystalline materials. Appl. Phys. Lett. 76(17), 2385 (2000).Google Scholar
Combe, E., Funahashi, R., Azough, F., and Freer, R.: Relationship between microstructure and thermoelectric properties of Bi2Sr2Co2O x bulk materials. J. Mater. Res. 29(12), 1376 (2014).Google Scholar
Funahashi, R., Matsubara, I., Ueno, K., and Ishikawa, H.: Mechanism of Bi2Sr2CaCu2O x crystallization and superconducting properties for Bi2Sr2CaCu2O x /Ag tapes prepared using isothermal partial melting method. Phys. C 311, 107 (1999).Google Scholar
Shin, W. and Murayama, N.: Thermoelectric properties of (Bi,Pb)–Sr–Co–O oxide. J. Mater. Res. 15(2), 382 (2000).Google Scholar
Masuda, Y., Nagahama, D., Itahara, H., Tani, T., Seo, W.S., and Koumoto, K.: Thermoelectric performance of Bi- and Na-substituted Ca3Co4O9 improved through ceramic texturing. J. Mater. Chem. 13(5), 1094 (2003).Google Scholar
Lotgering, F.K.; Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 9, 113 (1959).Google Scholar
Jankovský, O., Sedmidubský, D., Rubešová, K., Sofer, Z., Leitner, J., Ružička, K., and Svoboda, P.: Structure, non-stoichiometry and thermodynamic properties of Bi1.85Sr2Co1.85O7.7−δ ceramics. Thermochim. Acta 582, 40 (2014).Google Scholar
Rubešová, K., Hlásek, T., Jakeš, V., Sedmidubský, D., and Hejtmánek, J.: Water based sol–gel methods used for Bi-222 thermoelectrics preparation. J. Sol-Gel Sci. Technol. 64(1), 93 (2012).Google Scholar
Hsu, H.C., Lee, W.L., Wu, K.K., Kuo, Y.K., Chen, B.H., and Chou, F.C.: Enhanced thermoelectric figure-of-merit ZT for hole-doped Bi2Sr2Co2O y . J. Appl. Phys. 111, 103709 (2012).Google Scholar
Wang, S., Bai, Z., Wang, H., , Q., Wang, J., and Fu, G.: High temperature thermoelectric properties of Bi2Sr2Co2O y /Ag composites. J. Alloys Compd. 554, 254 (2013).Google Scholar
Androulakis, J., Migiakis, M., and Giapintzakis, J.: La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide. Appl. Phys. Lett. 84(7), 1099 (2004).Google Scholar
Wang, S., Yang, J., Toll, T., Yang, J., Zhang, W., and Tang, X.: Conductivity-limiting bipolar thermal conductivity in semiconductors. Sci. Rep. 5, 10136 (2015).Google Scholar
Xu, G., Funahashi, R., Shikano, M., Matsubara, I., and Zhou, Y.: Thermoelectric properties of Bi2.2−x Pb x Sr2Co2O y system. J. Appl. Phys. 91, 4344 (2002).CrossRefGoogle Scholar
Ashcroft, N.W. and Mermin, N.D.: Solid State Physics (Saunders, 1976); pp. 67.Google Scholar
Terasaki, I., Tanaka, H., Satake, A., Okada, S., and Fujii, T.: Out-of-plane thermal conductivity of the layered thermoelectric oxide Bi2−x Pb x Sr2Co2O y . Phys. Rev. B: Condens. Matter Mater. Phys. 70, 214106 (2004).Google Scholar
Battabyal, M. and Dey, T.K.: Thermal and electronic transport in La0.7Sr0.3-x Ag x MnO3 compounds between 50 and 450 K. Phys. B 373(1), 46 (2006).Google Scholar
Qu, Z., Wan, C., and Pan, W.: Thermophysical properties of rare-earth stannates: Effect of pyrochlore structure. Acta Mater. 60, 2939 (2012).Google Scholar
Morimoto, K., Kato, M., Ogasawara, M., Kashimura, M., and Abe, T.: Thermal conductivities of (U, Pu, Am)O2 solid solutions. J. Alloys Compd. 452, 54 (2008).Google Scholar