Hostname: page-component-797576ffbb-xg4rj Total loading time: 0 Render date: 2023-12-04T23:15:02.641Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

A computational study of SrTiO3 thin film deposition: Morphology and growth modes

Published online by Cambridge University Press:  31 January 2011

Cosima N. Boswell*
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Susan B. Sinnott*
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
a) Current address: University of California Berkeley, Berkeley, California 94720.
b) Address all correspondence to this author. e-mail:
Get access


The growth of SrTiO3 (STO) thin films is examined using classical molecular dynamics simulations. First, a beam of alternating SrO and TiO2 molecules is deposited on the (001) surface of STO with incident kinetic energies of 0.1, 0.5, or 1.0 eV/atom. Second, deposition of alternating SrO and TiO2 monolayers, where both have incident energies of 1.0 eV/atom, is examined. The resulting thin film morphologies predicted by the simulations are compared to available experimental data. The simulations indicate the way in which the incident energy, surface termination, and beam composition influence the morphology of the thin films. On the whole, some layer-by-layer growth is predicted to occur on both SrO- and TiO2-terminated STO for both types of deposition processes, with the alternating monolayer approach yielding thin films with compositions that are much closer to that of bulk STO.

Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1Zhou, C. and Newns, D.M.: Intrinsic dead layer effect and the performance of ferroelectric thin film capacitors. J. Appl. Phys. 82, 3081 (1997)Google Scholar
2Petrov, P. and Carlsson, E.F.: Improved SrTiO3 multilayers for microwave application: Growth and properties. J. Appl. Phys. 84, 3134 (1998)Google Scholar
3Treece, R.E., Thompson, J.B., Mueller, C.H., Riykin, T., and Cromar, M.W.: Optimization of SrTiO3 for applications in tunable resonant circuits. IEEE Trans. Appl. Supercond. 7, 2363 (1997)Google Scholar
4Roy, D., Peng, C.J., and Krupanidhi, S.B.: Excimer laser ablated strontium titanate thin films for dynamic random-access memory applications. Appl. Phys. Lett. 60, 2478 (1992)Google Scholar
5Shirane, G. and Yamada, Y.: Lattice-dynamical study of the 110 K phase transition in SrTiO3. Phys. Rev. 177(2), 858 (1969).Google Scholar
6Piskunov, S., Heifets, E., Eglitis, R.I., and Borstel, G.: Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovs-kites: An ab initio HF/DFT study. Comput. Mater. Sci. 29, 165 (2004)Google Scholar
7Hadjiivanov, K.I. and Klissurski, D.G.: Surface chemistry of titania (anatase) and titania-supported catalysts. Chem. Soc. Rev. 25, 61 (1996)Google Scholar
8Nakamura, T., Inada, H., and Iiyama, M.: In situ surface characterization of SrTiO3(100) substrates and homoepitaxial SrTiO3 thin films grown by molecular beam epitaxy and pulsed laser deposition. Appl. Surf. Sci. 130–132, 576 (1998)Google Scholar
9Ong, C.K. and Wang, S.J.: In situ RHEED monitor of the growth of epitaxial anatase TiO2 thin films. Appl. Surf. Sci. 185, 47 (2001)Google Scholar
10Takahashi, R., Matsumoto, Y., Ohsawa, T., Lippmaa, M., Kawasaki, M., and Koinuma, H.: Growth dynamics of the epitaxial SrO film on SrTiO3(001). J. Cryst. Growth 234, 505 (2002)Google Scholar
11Khodan, A.N., Guyard, S., Contour, J.P., Crete, D.G., Jacquet, E., and Bouzehouane, K.: Pulsed laser deposition of epitaxial SrTiO3films: Growth, structure and functional properties. Thin Solid Films 515, 6422 (2007)Google Scholar
12Ohtomo, A. and Hwang, H.Y.: Growth mode control of the free-carrier density in SrTiO3 films. J. Appl. Phys. 102, 083704 (2007)Google Scholar
13Kubo, M., Oumi, Y., Miura, R., Stirling, A., Miyamoto, A., Kawasaki, M., Yoshimoto, M., and Koinuma, H.: Atomic control of layer-by-layer epitaxial growth on SrTiO3(001): Molecular-dynamics simulations. Phys. Rev. B 56(20), 13535 (1997).Google Scholar
14Wohlwend, J.L., Behera, R.K., Jang, I., Phillpot, S.R., and Sinnott, S.B.: Morphology and growth modes of metal-oxides deposited on SrTiO3. Surf. Sci. 603(6), 873 (2009)Google Scholar
15Sekiguchi, S., Fujimoto, M., Nomura, M., Cho, S.B., Tanaka, J., Nishihara, T., Kang, M.G., and Park, H.H.: Atomic force microscopic observation of SrTiO3 polar surface. Solid State Ionics 108, 73 (1998)Google Scholar
16Wolf, D., Keblinski, P., Phillpot, S.R., and Eggebrecht, J.: Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r–1 summation. J. Chem. Phys. 110(17), 8254 (1999)Google Scholar
17Allen, M.P. and Tildesley, D.J.: Computer Simulation of Liquids (Oxford University Press, Oxford, UK, 1987), pp. 155, 162.Google Scholar
18Kennedy, R.J. and Stampe, P.A.: The influence of lattice mismatch and film thickness on the growth of TiO2 on LaAlO3 and SrTiO3substrates. J. Cryst. Growth 252, 333 (2003)Google Scholar
19Koster, G., Rijnders, G., Blank, D.H.A., and Rogalla, H.: Surface morphology determined by (001) single-crystal SrTiO3 termination. Physica C 339, 215 (2000)Google Scholar
20Liu, L., Lu, H., Fei, Y., Guo, H., Xiang, W., and Chen, Z.: Formation of atomically smooth surfaces on SrTiO3 substrates for epitaxial film growth. J. Cryst. Growth 253, 374 (2003)Google Scholar
21Tse, Y.Y., Koutsonas, Y., Jackson, T.J., Passerieux, G., and Jones, I.P.: Microstructure of homoepitaxial strontium titanate films grown by pulsed laser deposition. Thin Solid Films 515, 1788 (2006)Google Scholar
22Blank, D.H.A., Rijnders, G., Koster, G., and Rogalla, H.: In-situ monitoring during pulsed laser deposition using RHEED at high pressure. Appl. Surf. Sci. 127–129, 633 (1998)Google Scholar
23Li, Y.R., Jiang, S.W., Zhang, Y., Deng, X.W., and Wei, X.H.: Surface diffusion during layer growth of SrTiO3 films with pulsed laser molecular beam epitaxy. J. Cryst. Growth 278, 629 (2005)Google Scholar
24Song, J.H. and Jeong, Y.H.: SrTiO3 homoepitaxy by the pulsed laser deposition method: Island, layer-by-layer, and step-flow growth. Solid State Commun. 125, 563 (2003)Google Scholar