Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-9jmqz Total loading time: 0.368 Render date: 2021-05-10T06:29:15.920Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Chemical binding of pyridine on TiO2 nanocrystalline film and its photoelectrochemical properties

Published online by Cambridge University Press:  31 January 2011

Jianguang Jia
Affiliation:
Department of Physical Chemistry, School of Science, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
Xurui Xiao
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
Corresponding
E-mail address:
Get access

Abstract

Aiming to bind molecules without O-containing groups such as the –OH or –COOH functional groups, a new two-step method involving thermal activation and followed by an in situ chemical reaction was suggested, and the binding of the pyridine molecule on TiO2 nanocrystalline films was realized. UV-Vis, FTIR, and XPS characterizations revealed that pyridine molecules are chemically linked to the TiO2 surface by forming Ti-pyridine bonds. Mott-Schottky measurements indicated that the binding of pyridine results in a positive shift of the flat band potential for TiO2 nanocrystalline film, which is attributed to the alternating surface dipole moment of TiO2 nanocrystals upon pyridine binding. Electrochemical and photoelectrochemical investigations indicated that the binding of pyridine on TiO2 nanocrystalline film has high electrochemical and photoelectrochemical stability.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

1.O’Regan, B., Graetzel, M.A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991)CrossRefGoogle Scholar
2.Pang, S., Xie, T.F., Zhang, Y., Wei, X., Yang, M., Wang, D.J., Du, Z.L.Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells. J. Phys. Chem. C 111, 18417 (2007)CrossRefGoogle Scholar
3.Zhuang, H.Z., Xue, S.B.Effect of ammoniating temperature on morphologic and optical properties of GaN nanostructured materials. Mater. Lett. 62, 23 (2008)Google Scholar
4.Cheng, C., Lee, J.H., Lim, K.H., Massoud, H.Z., Liu, Q.H.3D quantum transport solver based on the perfectly matched layer and spectral element methods for the simulation of semiconductor nanodevices. J. Comput. Phys. 227, 455 (2007)CrossRefGoogle Scholar
5.Valentin, C.D., Pacchioni, G., Selloni, A.Origin of the different photoactivity of N-doped anatase and rutile TiO2. Phys. Rev. B: Condens. Matter 70, 085116 (2004)CrossRefGoogle Scholar
6.Zhao, W., Ma, W., Chen, C., Shuai, Z.Efficient degradation of toxic organic pollutants with Ni2O3/TiO2–xBx under visible irradiation. J. Am. Chem. Soc. 126, 4782 (2004)CrossRefGoogle Scholar
7.Li, J.G., Cheng, C.T., Di, L., Haneda, H., Ishigaki, T.Monodispersed spherical particles of brookite-type TiO2: Synthesis, characterization, and photocatalytic property. J. Am. Ceram. Soc. 87, 1358 (2004)CrossRefGoogle Scholar
8.Wu, J.J., Yu, C.C.Aligned TiO2 nanorods and nanowalls. J. Phys. Chem. B 108, 3377 (2004)CrossRefGoogle Scholar
9.Lei, Y., Zhang, L.D., Fan, J.C.Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem. Phys. Lett. 338, 231 (2001)CrossRefGoogle Scholar
10.Zhang, J.X., Jiang, D.L., Lars, W., Peter, G.Binary solvent mixture for tape casting of TiO2 sheets. J. Eur. Ceram. Soc. 24, 147 (2004)Google Scholar
11.Nussbaumer, R.J., Caseri, W., Tervoort, T., Smith, P.Synthesis and characterization of surface-modified rutile nanoparticles and transparent polymer composites thereof. J. Nanopart. Res. 4, 319 (2002)CrossRefGoogle Scholar
12.Kay, A., Gratzel, M.Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97, 6272 (1993)CrossRefGoogle Scholar
13.Moser, J., Punchihewa, S., Infelta, P.P., Gratzel, M.Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir 7, 3012 (1991)CrossRefGoogle Scholar
14.Nakato, Y., Jia, J.G., Ishida, M., Morisawa, K., Fujitani, M., Hinogami, R., Yae, S.Efficient solar to chemical conversion by one chip of n-type silicon with surface asymmetrization. Electrochem. Solid-State Lett. 1, 71 (1998)CrossRefGoogle Scholar
15.Jin, T., Fujii, F., Yamada, E., Nodasaka, Y., Kinjo, M.Control of the optical properties of quantum dots by surface coating with calix[n]arene carboxylic acids. J. Am. Chem. Soc. 128, 9288 (2006)CrossRefGoogle Scholar
16.Subramanian, V., Wolf, E.E., Kamat, P.V.Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126, 4943 (2004)CrossRefGoogle Scholar
17.Ramakrishna, G., Singh, A.K., Palit, D.K., Ghosh, H.N.Slow back electron transfer in surface-modified TiO2 nanoparticles sensitized by alizarin. J. Phys. Chem. B 108, 1701 (2004)CrossRefGoogle Scholar
18.Asahi, R., Morkawa, T., Ohawaki, T., Taga, Y.Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)CrossRefGoogle Scholar
19.Sakthivel, S., Kisch, H.Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908 (2003)CrossRefGoogle Scholar
20.Hagfeldt, A., Gratzel, M.Molecular photovoltaics. Acc. Chem. Res. 33, 269 (2000)CrossRefGoogle Scholar
21.Hagfeldt, A., Gratzel, M.Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995)CrossRefGoogle Scholar
22.Thurnauer, M.C., Rajh, T., Tiede, D.M.Surface modification of TiO2: Correlation between structure, charge separation and reduction properties. Acta Chem. Scand. 51, 610 (1997)CrossRefGoogle Scholar
23.Rodriguez, R., Blesa, M.A., Regazzoni, A.E.Surface complexation at the TiO2 (anatase)/aqueous solution interface: Chemisorption of catechol. J. Colloid Interface Sci. 177, 122 (1996)CrossRefGoogle Scholar
24.Rajh, T., Ostfin, A.E., Micic, O.I., Tiede, D.M., Thurnauer, M.C.Surface modification of small particle TiO2 colloids with cysteine for enhanced photochemical reduction: An EPR study. J. Phys. Chem. 100, 4538 (1996)CrossRefGoogle Scholar
25.Rajh, T., Tiede, D.M., Thurnauer, M.C.Surface modification of TiO2 nanoparticles with bidentate ligands studied by EPR spectroscopy. J. Non-Cryst. Solids 205–207, 815 (1996)CrossRefGoogle Scholar
26.Rajh, T., Nedeljkovic, J.M., Chen, L.X., Poluektov, O., Thurnauer, M.C.Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C. J. Phys. Chem. B 103, 3515 (1999)CrossRefGoogle Scholar
27.Rajh, T., Chen, L.X., Lukas, K., Liu, T., Thurnauer, M.C., Tiede, D.M.Surface restructuring of nanoparticles: An efficient route for ligand−metal oxide crosstalk. J. Phys. Chem. B 106, 10543 (2002)CrossRefGoogle Scholar
28.Niederberger, M., Garnweitner, G., Krumeich, F., Nesper, R., Colfen, H., Antonietti, M.Tailoring the surface and solubility properties of nanocrystalline titania by a nonaqueous in situ functionalization process. Chem. Mater. 16, 1202 (2004)CrossRefGoogle Scholar
29.Ruhle, S., Greenshtein, M., Chen, S-G., Merson, A., Pizem, H., Sukenik, C.S., Cahen, D., Zaban, A.Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. J. Phys. Chem. B 109, 18907 (2005)CrossRefGoogle Scholar
30.Xagas, A.P., Bernard, M.C., Goff, A.H-L., Spyrellis, N., Loizos, Z., Falaras, P.Surface modification and photosensitisation of TiO2 nanocrystalline films with ascorbic acid. J. Photochem. Photobiol., A 132, 115 (2000)CrossRefGoogle Scholar
31.Li, M.Y., Feng, S.J., Fang, S.B., Xiao, X.R., Li, X.P., Zhou, X.W., Lin, Y.The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells. Electrochim. Acta 52, 4858 (2007)CrossRefGoogle Scholar
32.Moser, J., Punchihewa, S., Infelta, P.P., Gratzel, M.Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir 7, 3012 (1991)CrossRefGoogle Scholar
33.Primet, M., Pichat, P., Mathieu, M.V.Infrared study of the surface of titanium dioxides. I. Hydroxyl groups. J. Phys. Chem. 75, 1216 (1971)CrossRefGoogle Scholar
34.Barber, M., Connor, J.A., Guest, M.F., Hillier, I.H., Schwarz, M., Stacey, M.Bonding in some donor–acceptor complexes involving boron trifluoride. Study by means of ESCA and molecular orbital calculations. J. Chem. Soc., Faraday Trans. II 69, 551 (1973)CrossRefGoogle Scholar
35.Camalli, M., Caruso, F., Mattogno, G., Rivarola, E.Adducts of tin(IV) and organotin(IV) derivatives with 2,2′-azopyridine II. Crystal and molecular structure of SnMe2Br2AZP and further Mössbauer and photoelectronic spectroscopic studies. Inorg. Chim. Acta 170, 225 (1990)CrossRefGoogle Scholar
36.Cao, F., Oskam, G., Searson, P.C., Stipkala, J.M., Heimer, T.A., Farazad, F., Meyer, G.J.Electrical and optical properties of porous nanocrystalline TiO2 films. J. Phys. Chem. 99, 11974 (1995)CrossRefGoogle Scholar
37.Mrowetz, M., Blacerski, W., Colussi, A.J., Hoffmann, M.R.Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J. Phys. Chem. B 108, 17269 (2004)CrossRefGoogle Scholar
38.DeMore, B.B., Wilcox, W.S., Goldstein, J.H.Microwave spectrum and dipole moment of pyridine. J. Chem. Phys. 22, 876 (1954)CrossRefGoogle Scholar
39.Gerald, E.Hyperfine structure in O17H and the OH dipole moment. Phys. Rev. 130, 669 (1963)Google Scholar
40.Tokudome, H., Miyauchi, M.Electrochromism of titanate-based nanotubes. Angew. Chem. Int. Ed. 44, 1974 (2005)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Chemical binding of pyridine on TiO2 nanocrystalline film and its photoelectrochemical properties
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Chemical binding of pyridine on TiO2 nanocrystalline film and its photoelectrochemical properties
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Chemical binding of pyridine on TiO2 nanocrystalline film and its photoelectrochemical properties
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *