Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-12T18:03:42.582Z Has data issue: false hasContentIssue false

Characterization of metallurgical grade silicon

Published online by Cambridge University Press:  31 January 2011

J. C. Anglézio
Laboratoire de Métallurgie Structurale, U.A. CNRS 1107, UPS 91405, OrsayCedex, France
C. Servant
Laboratoire de Métallurgie Structurale, U.A. CNRS 1107, UPS 91405, OrsayCedex, France
F. Dubrous
Laboratoire d'Electrothermie de Chedde, Péchiney Electrométallurgie, 74190 Le Fayet, France
Get access


Optical metallography, scanning electron microscopy, electron microprobe analysis, and transmission electron microscopy were used to characterize metallurgical grade silicon, produced in an electric are furnace. Coincidence fraction determinations were assumed to be Σ7 and Σ9 when grain boundaries are underlined by precipitated phases and Σ3 when they are not. The study of intergranular compounds was emphasized; ten compounds were found, the main ones being Si2Ca, Si8Al6Fe4Ca, Si2Al2Ca, Si2FeTi, and Si2.4Fe (α leboitc). The precipitation of these compounds was discussed according to the principal impurity concentrations in silicon. The crystalline structure of Si8Al6Fe4Ca was determined to be triclinic with a = 1.3923 nm, b = 1.3896 nm, c = 1.3900 nm and α = 92.4°, β = 110.3°, γ = 119.9°.

Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1Binary Alloy Phase Diagrams, edited by Massalski, Thaddeus B. (ASM, Metals Park, OH, 1987).Google Scholar
2Mykura, H., Grain-Boundary Structure and Kinetics, ASM Materials Science Seminar, 445–456 (1980).Google Scholar
3Bary, A., Thèse de Doctorat de troisième cycle, Université de Caen (1984).Google Scholar
4 A. Chrétien, Freundlich, W., and Deschanvres, A., Compte Rendu de l'Académie des Sciences 241, 1781 (1956).Google Scholar
5Hecht, M. and Mercier, J. C., Fonderie-Fondeurs d'Aujourd' hui 58 (12) 23 (1986).Google Scholar
6Markiv, V. Y., Gladyshevskii, E. I., Kripyakevitch, P. I., Fedoruk, T. I., and Lysenko, L. A., Diagrammy Sostoyaniya Metall. Sistem, Nauka, Moscowa, 137 (1968).Google Scholar
7Huff, J. A. de, Electric Furnace Proceedings, 167174 (1969).Google Scholar
8Sabirzyanov, A. V., Shumilov, M. A., Gel'd, P. V., and Ozhgikhina, G. V., Fiz. Metal. Metalloved 5 (12), 714 (1961).Google Scholar
9Skripova, E. A. and Letun, G. M., Trudy Ural'sk. Politeckhn. Inst. 144, 67 (1965).Google Scholar
10Sabirzyanov, A. V. and Shumilov, M. A., Trudy Ural'sk. Politekhn. Inst. 144, 35 (1965).Google Scholar
11Zarechnyuk, O. S., German, N. V., Yanson, T. I., Rykhal, R. M., and Muraveva, A. A., Fazouye Ravnovesiya Met. Splavakh, 69 (1981)Google Scholar