Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-mpvvr Total loading time: 0.238 Render date: 2021-07-30T07:54:46.617Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Bromination and cyanation for improving electron transport performance of anthra-tetrathiophene

Published online by Cambridge University Press:  29 January 2016

Jun Yin
Affiliation:
Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, People's Republic of China
Kadali Chaitanya
Affiliation:
Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, People's Republic of China
Xue-Hai Ju
Affiliation:
Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, People's Republic of China
Corresponding
E-mail address:
Get access

Abstract

The charge transport properties of anthra-tetrathiophene (ATT) and its brominated and cyanated derivatives (TBATT and TCATT) were investigated by the density functional theory (DFT) coupled with incoherent charge-hopping model. The crystal structure of TCATT is predicted by the dispersion-corrected DFT (DFT-D) method, and those of ATT and TBATT are retrieved from the Cambridge Crystallographic Data Center. The introduction of electron-withdrawing substituents of bromine and cyano decreases the frontier molecular orbital energies but increases the electron affinities, which is beneficial to electron injection and guarantees charge carrier stabilization. The π–π stacking of neighbor molecules with a short distance and large coupling area contributes to the largest transfer integral. The predicted electron mobility of TCATT reaches up to 1.851 cm2/(V·s), indicating that the cyanation of ATT is favorable for improving the electron transport. The angular dependent simulation for electron mobility shows that the electron transport is remarkably anisotropic.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Susan B. Sinnott

References

Klauk, H., Zschieschang, U., Pflaum, J., and Halik, M.: Ultralow-power organic complementary circuits. Nature 445(7129), 745 (2007).CrossRefGoogle ScholarPubMed
Arias, C., MacKenzie, J.D., McCulloch, I., Rivnay, J., and Salleo, A.: Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 110(1), 3 (2010).CrossRefGoogle ScholarPubMed
Newman, C.R., Frisbie, C.D., da Silva, D.A., Bredas, J.L., Ewbank, P.C., and Mann, K.R.: Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 16(23), 4436 (2004).CrossRefGoogle Scholar
Zaumseil, J. and Sirringhaus, H.: Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107(4), 1296 (2007).CrossRefGoogle ScholarPubMed
Wang, Z., Kim, C., Facchetti, A., and Marks, T.J.: Anthracenedicarboximides as air-stable n-channel semiconductors for thin-film transistors with remarkable current on-off ratios. J. Am. Chem. Soc. 129(44), 13362 (2007).CrossRefGoogle ScholarPubMed
Sancho-García, J.C., Pérez-Jiménez, A.J., Olivier, Y., and Cornil, J.: Molecular packing and charge transport parameters in crystalline organic semiconductors from first-principles calculations. Phys. Chem. Chem. Phys. 12(32), 9381 (2010).CrossRefGoogle ScholarPubMed
Takimiya, K., Ebata, H., Sakamoto, K., Izawa, T., Otsubo, T., and Kunugi, Y.: 2,7-Diphenyl[1]benzothieno[3,2-b]benzothiophene, A new organic semiconductor for air-stable organic field-effect transistors with mobilities up to 2.0 cm2·V−1·s−1 . J. Am. Chem. Soc. 128(39), 12604 (2006).CrossRefGoogle Scholar
Kanibolotsky, A.L., Perepichka, I.F., and Skabara, P.J.: Star-shaped π-conjugated oligomers and their applications in organic electronics and photonics. Chem. Soc. Rev. 39(7), 2695 (2010).CrossRefGoogle ScholarPubMed
Liu, W.J., Zhou, Y., Ma, Y., Cao, Y., Wang, J., and Pei, J.: Thin film organic transistors from air-stable heteroarenes: Anthra-[1,2-b:4,3-b′:5,6-b″:8,7-b‴]tetrathiophene derivatives. Org. Lett. 9(21), 4187 (2007).CrossRefGoogle Scholar
Brusso, J.L., Hirst, O.D., Dadvand, A., Ganesan, S., Cicoira, F., Robertson, C.M., Oakley, R.T., Rosei, F., and Perepichka, D.F.: Two-dimensional structural motif in thienoacene semiconductors: Synthesis, structure, and properties of tetrathienoanthracene isomers. Chem. Mater. 20(7), 2484 (2008).CrossRefGoogle Scholar
Hutchison, G.R., Ratner, M.A., and Marks, T.J.: Hopping transport in conductive heterocyclic oligomers: Reorganization energies and substituent effects. J. Am. Chem. Soc. 127(7), 2339 (2005).CrossRefGoogle ScholarPubMed
Geng, H., Niu, Y., Peng, Q., Shuai, Z., Coropceanu, V., and Brédas, J.L.: Theoretical study of substitution effects on molecular reorganization energy in organic semiconductors. J. Chem. Phys. 135(10), 104703 (2011).CrossRefGoogle ScholarPubMed
Chai, S., Wen, S.H., Huang, J.D., and Han, K.L.: Density functional theory study on electron and hole transport properties of organic pentacene derivatives with electron-withdrawing substituent. J. Comput. Chem. 32(15), 3218 (2011).CrossRefGoogle ScholarPubMed
Kuo, M.Y., Chen, H.Y., and Chao, I.: Cyanation: Providing a three-in-one advantage for the design of n-type organic field-effect transistors. Chem. - Eur. J. 13(17), 4750 (2007).CrossRefGoogle ScholarPubMed
Leitch, A.A., Mansour, A., Stobo, K.A., Korobkov, I., and Brusso, J.L.: Functionalized tetrathienoanthracene: Enhancing π-π interactions through expansion of the π-conjugated framework. Cryst. Growth Des. 12(3), 1416 (2012).CrossRefGoogle Scholar
Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., and Brédas, J.L.: Charge transport in organic semiconductors. Chem. Rev. 107(4), 926 (2007).CrossRefGoogle ScholarPubMed
Marcus, R.A.: Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599 (1993).CrossRefGoogle Scholar
Kwiatkowski, J.J., Nelson, J., Li, H., Brédas, J.L., Wenzel, W., and Lennartz, C.: Simulating charge transport in tris(8-hydroxyquinoline) aluminium (Alq3). Phys. Chem. Chem. Phys. 10(14), 1852 (2008).CrossRefGoogle Scholar
Malagoli, M. and Brédas, J.L.: Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem. Phys. Lett. 327(1–2), 13 (2000).CrossRefGoogle Scholar
Wang, L.J., Li, P., Xu, B., Zhang, H.Y., and Tian, W.J.: The substituent effect on charge transport property of triisopropylsilylethynyl anthracene derivatives. Org. Electron. 15(10), 2476 (2014).CrossRefGoogle Scholar
Delgado, M.C.R., Kim, E.G., daSilvaFilho, D.A., and Brédas, J.L.: Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: A density functional theory investigation. J. Am. Chem. Soc. 132(10), 3375 (2010).CrossRefGoogle ScholarPubMed
Song, P. and Ma, F.C.: Tunable electronic structures and optical properties of fluorenone-based molecular materials by heteroatoms. J. Phys. Chem. A 114(5), 2230 (2010).CrossRefGoogle ScholarPubMed
Li, C.H., Huang, C.H., and Kuo, M.Y.: Halogenated 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene: Applications for ambipolar air-stable organic field-effect transistors. Phys. Chem. Chem. Phys. 13(23), 11148 (2011).CrossRefGoogle ScholarPubMed
An, D.H., Zhang, M., Li, D.N., Pan, S.L., Chen, H.M., Yang, Z.H., Zhu, Y.T., Sun, Y., Zhang, H., and Li, Y.Y.: Linear and nonlinear optical properties of aluminum borate crystal Al5BO9: Experiment and calculation. J. Mater. Res. 30(18), 2319 (2015).CrossRefGoogle Scholar
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J.: Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009).Google Scholar
Valeev, E.F., Coropceanu, V., da Silva Filho, D.A., Salman, S., and Brédas, J.L.: Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J. Am. Chem. Soc. 128(30), 9882 (2006).CrossRefGoogle ScholarPubMed
Löwdin, P.: On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. 18, 365 (1950).CrossRefGoogle Scholar
Gorelsky, S.I., Ghosh, S., and Solomon, E.I.: Mechanism of N2O reduction by the μ4-S tetranuclear CuZ cluster of nitrous oxide reductase. J. Am. Chem. Soc. 128(1), 278 (2006).CrossRefGoogle ScholarPubMed
Huang, J.S. and Kertesz, M.: Validation of intermolecular transfer integral and bandwidth calculations for organic molecular materials. J. Chem. Phys. 122(23), 234707 (2005).CrossRefGoogle ScholarPubMed
Wen, S.H., Li, A., Song, J.L., Deng, W.Q., Han, K.L., and Goddard, W.A. III: First-principles investigation of anistropic hole mobilities in organic semiconductors. J. Phys. Chem. B 113(26), 8813 (2009).CrossRefGoogle ScholarPubMed
Accelrys Inc.: Materials Studio, 6.0 V (Accelrys Inc., San Diego, CA, 2010).
Mayo, S.L., Olafson, B.D., and Goddard, W.A. III: Dreiding: A generic force field for molecular simulations. J. Phys. Chem. 94(26), 8897 (1990).CrossRefGoogle Scholar
Cheng, Y.F., Lu, Z.Y., An, L.J., and Zhang, J.P.: From molecules to materials: Molecular and crystal engineering design of organic optoelectronic functional materials for high carrier mobility. J. Phys. Chem. C 116(1), 1195 (2012).CrossRefGoogle Scholar
Ortmann, F., Bechstedt, F., and Schmidt, W.G.: Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B. 73(20), 205101 (2006).CrossRefGoogle Scholar
Zhao, C.B., Wang, W.L., Yin, S.W., and Ma, Y.: Theoretical investigation on electronic, optical, and charge transport properties of 7,8,15,16-tetraazaterrylene and its derivatives with electron-attracting substituents. New J. Chem. 37(9), 2925 (2013).CrossRefGoogle Scholar
Yin, J., Chaitanya, K., and Ju, X.H.: Theoretical study of the fluorination effect on charge transport properties in fused thiophene derivatives. RSC Adv. 5(80), 65192 (2015).CrossRefGoogle Scholar
Saranya, G., Navamani, K., and Senthilkumar, K.: A theoretical study on optical and charge transport properties of anthra-[1,2-b:4,3-b′:5,6-b″:8,7-b‴]tetrathiophene molecules. Chem. Phys. 443, 48 (2014).CrossRefGoogle Scholar
Usta, H., Risko, C., Wang, Z.M., Huang, H., Deliomeroglu, M.K., Zhukhovitskiy, A., Facchetti, A., and Marks, T.J.: Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. J. Am. Chem. Soc. 131(15), 5586 (2009).CrossRefGoogle ScholarPubMed
Adiga, S.P. and Shukla, D.: Electronic structure and charge-transport properties of N,N′-bis(cyclohexyl)naphthalene diimide. J. Phys. Chem. C 114(6), 2751 (2010).CrossRefGoogle Scholar
Chang, Y.C., Kuo, M.Y., Chen, C.P., Lu, H.F., and Chao, I.: On the air stability of n-channel organic field-effect transistors: A theoretical study of adiabatic electron affinities of organic semiconductors. J. Phys. Chem. C 114(26), 11595 (2010).CrossRefGoogle Scholar
Liu, C.C., Mao, S.W., and Kuo, M.Y.: Cyanated pentaceno[2,3-c]chalcogenophenes for potential application in air-stable ambipolar organic thin-film transistors. J. Phys. Chem. C 114(50), 22316 (2010).CrossRefGoogle Scholar
Kwiatkowski, J.J., Frost, J.M., and Nelson, J.: The effect of morphology on electron field-effect mobility in disordered C60 thin films. Nano Lett. 9(3), 1085 (2009).CrossRefGoogle ScholarPubMed
Tang, X.D., Liao, Y., Gao, H.Z., Geng, Y., and Su, Z.M.: Theoretical study of the bridging effect on the charge carrier transport properties of cyclooctatetrathiophene and its derivatives. J. Mater. Chem. 22(14), 6907 (2012).CrossRefGoogle Scholar
Schrader, M., Fitzner, R., Hein, M., Elschner, C., Baumeier, B., Leo, K., Riede, M., Bäuerle, P., and Andrienko, D.: Comparative study of microscopic charge dynamics in crystalline acceptor-substituted oligothiophenes. J. Am. Chem. Soc. 134(13), 6052 (2012).CrossRefGoogle ScholarPubMed
Maly, K.E.: Acenes vs n-heteroacenes: The effect of n-substitution on the structural features of crystals of polycyclic aromatic hydrocarbons. Cryst. Growth Des. 11(12), 5628 (2011).CrossRefGoogle Scholar
Zhang, X.Y., Zhao, G.J., Huang, J.D., and Zhang, W.P.: Effects of carbon chain on hole-transport properties in naphtho[2,1-b:6,5-b′]difuran derivatives: Remarkable anisotropic mobilities. Org. Electron. 15(11), 3341 (2014).CrossRefGoogle Scholar
Hoang, M.H., Kim, Y., Kim, M., Kim, K.H., Lee, T.W., Nguyen, D.N., Kim, S.J., Lee, K., Lee, S.J., and Choi, D.H.: Unusually high-performing organic field-effect transistors based on π-extended semiconducting porphyrins. Adv. Mater. 24(39), 5363 (2012).CrossRefGoogle ScholarPubMed
Usta, H., Facchtti, A., and Marks, T.J.: n-Channel semiconductor materials design for organic complementary circuits. Acc. Chem. Res. 44(7), 501 (2011).CrossRefGoogle ScholarPubMed
Zhou, K., Dong, H., Zhang, H.L., and Hu, W.P.: High performance n-type and ambipolar small organic semiconductors for organic thin film transistors. Phys. Chem. Chem. Phys. 16(41), 22448 (2014).CrossRefGoogle ScholarPubMed
Duan, Y.A., Li, H.B., Geng, Y., Wu, Y., Wang, G.Y., and Su, Z.M.: Theoretical studies on the hole transport property of tetrathienoarene derivatives: The influence of the position of sulfur atom, substituent and π-conjugated core. Org. Electron. 15(2), 602 (2014).CrossRefGoogle Scholar
Supplementary material: File

Yin supplementary material

Tables S1-S5

Download Yin supplementary material(File)
File 107 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bromination and cyanation for improving electron transport performance of anthra-tetrathiophene
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Bromination and cyanation for improving electron transport performance of anthra-tetrathiophene
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Bromination and cyanation for improving electron transport performance of anthra-tetrathiophene
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *