Hostname: page-component-6d856f89d9-jrqft Total loading time: 0 Render date: 2024-07-16T04:23:26.434Z Has data issue: false hasContentIssue false

BaTiO3 nanocube and assembly to ferroelectric supracrystals

Published online by Cambridge University Press:  01 November 2013

Kazumi Kato*
National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama, Nagoya 463-8560, Japan
Ken-ichi Mimura
National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama, Nagoya 463-8560, Japan
Feng Dang
National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama, Nagoya 463-8560, Japan
Hiroaki Imai
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
Satoshi Wada
Department of Research Interdisciplinary Graduate School of Medicine and Engineering, Faculty of Engineering Department of Applied Chemistry, University of Yamanashi, Kofu 400-8511, Japan
Minoru Osada
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
Hajime Haneda
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
Makoto Kuwabara
Kyushu University, Kasuga, Fukuoka 816-8580, Japan
a)Address all correspondence to this author. e-mail:
Get access


New strategies for materials fabrication are of fundamental importance in the advancement of science and technology. Nanocrystals, especially with an anisotropic shape such as cubic, are candidates for building blocks for new bottom-up approaches to materials assembly, yielding a functional architecture. Such materials also receive attention because of their intrinsic size-dependent properties and resulting applications. Here, we report synthesis and characteristics of BaTiO3 and SrTiO3 nanocubes and the ordered assemblies as ferroelectric supracrystals. BaTiO3 and SrTiO3 nanocubes with narrow size distributions were obtained in an aqueous process. BaTiO3 films made up of ordered nanocube assemblies were fabricated on various substrates by evaporation-induced self-assembly method. Regardless of the substrate, the nanocubes exhibited {100} orientations and a high degree of face-to-face ordering, which remained even after heat treatment at 850 °C. Piezoresponse force microscopy was carried out on the supracrsytal films to obtain plots of the d33 piezoelectric coefficient against the poling field, and ferroelectric hysteresis curves were shown.

Invited Feature Papers
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



O’Brien, S., Brus, L., and Murray, C.B.: Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085 (2001).CrossRefGoogle Scholar
Niederberger, M., Pinna, N., Polleux, J., and Antonietti, M.: A general soft-chemistry route to perovskite and related materials: Synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles. Angew. Chem. Int. Ed. 42, 2270 (2004).CrossRefGoogle Scholar
Niederberger, M., Garnweitner, G., Pinna, N., and Antonietti, M.: Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba, Sr)TiO3 nanoparticles via a mechanism involving C-C bond formation. J. Am. Chem. Soc. 126, 9120 (2004).CrossRefGoogle Scholar
Wang, X., Zhuang, J., Peng, Q., and Li, Y.: A general strategy for nanocrystal synthesis. Nature 437, 121 (2005).CrossRefGoogle ScholarPubMed
Brutchey, R.L. and Morse, D.E.: Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions. Angew. Chem. Int. Ed. 45, 6564 (2006).CrossRefGoogle ScholarPubMed
Liu, H., Hu, C., and Wang, Z.L.: Composite-hydroxide-mediated approach for the synthesis of nanostructures of complex functional-oxides. Nano Lett. 6, 1535 (2006).CrossRefGoogle ScholarPubMed
Bansal, V., Poddar, P., Ahmad, A., and Sastry, M.: Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128, 11958 (2006).CrossRefGoogle ScholarPubMed
Huang, L., Chen, Z., Wilson, J.D., Banerjee, S., Robinson, R.D., Herman, I.O., Laibowitz, R., and O’Brien, S.: Barium titanate nanocrystals and nanocrystal thin film: Synthesis, ferroelectricity and dielectric properties. J. Appl. Phys. 100, 034316 (2006).CrossRefGoogle Scholar
Hou, B., Xu, Y., Wu, D., and Sun, Y.: Preparation and characterization of single-crystalline barium strontium titanate nanocubes via solvothermal method. Powder Technol. 170, 26 (2006).CrossRefGoogle Scholar
Su, K., Nuraje, N., and Yang, N.L.: Open-bench method for the preparation of BaTiO3, SrTiO3, and BaxSr1-xTiO3nanocrystals at 80 °C. Langmuir 23, 11269 (2007).CrossRefGoogle Scholar
Bao, N., Shen, L., Srinivasan, G., Yanagisawa, K., and Gupta, A.: Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: From nanotubes and nanowires to ordered nanostructures. J. Phys. Chem. C 112, 8634 (2008).CrossRefGoogle Scholar
Nakasone, F., Kobayashi, K., Suzuki, T., Mizuno, Y., Chazono, H., and Imai, H.: Nanoparticle-sintered BaTiO3 thin films and its orientation control by solid phase epitaxy. Jpn. J. Appl. Phys. 47, 8518 (2008).CrossRefGoogle Scholar
Adireddy, S., Lin, C., Cao, B., Zhou, W., and Caruntu, G.: Solution-based growth of monodisperse cube-like BaTiO3 colloidal nanocrystals. Chem. Mater. 22, 1946 (2010).CrossRefGoogle Scholar
Varghese, J., Whatmore, R.W., and Holmes, J.D.: Ferroelectric nanoparticles, wires, tubes: Synthesis, characterization and applications. J. Mater. Chem. 23, 26182638 (2013).Google Scholar
Akdogan, E.K. and Safari, A.: Phenomenological theory of size effects on the cubic-tetragonal phase transition in BaTiO3 nanocrystals. Jpn. J. Appl. Phys. 41, 7170 (2002).CrossRefGoogle Scholar
Hoshina, T., Furuta, T., Kigoshi, Y., Hata, S., Horiuchi, N., Takeda, H., and Tsurumi, T.: Size effect of nanograined BaTiO3 ceramics fabricated by aerosol deposition method. Jpn. J. Appl. Phys. 49, 09C02 (2010).CrossRefGoogle Scholar
Polking, M.J., Han, M.G., Yourdkhani, A., Petkov, V., Kisielowski, C.F., Volkov, V.V., Zhu, Y., Caruntu, G., Alivisatos, A.P., and Ramesh, R.: Ferroelectric order in individual nanometer scale crystals. Nat. Mater. 11, 700 (2012).CrossRefGoogle ScholarPubMed
Suzuki, T., Morito, K., and Iwazaki, Y.: The latest advances in high-dielectric thin-film capacitor techonology for GHz-RF devices. Integr. Ferroelectr. 76, 47 (2005).CrossRefGoogle Scholar
Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., and Streiffer, S.: Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).CrossRefGoogle Scholar
Guo, Y., Suzuki, K., Nishizawa, K., Miki, T., and Kato, K.: Electrical properties of (100)-predominant BaTiO3 films derived from alkoxide solutions of two concentrations. Acta Mater. 54, 3893 (2006).CrossRefGoogle Scholar
Talapin, D.V.: Nanocrystal solids: A modular approach to materials design. MRS Bull. 37, 63 (2012).CrossRefGoogle Scholar
Colfen, H. and Mann, S.: Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostrustures. Angew. Chem. Int. Ed. 42, 2350 (2003).CrossRefGoogle Scholar
Colfen, H. and Antonietti, M.: Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 44, 5576 (2005).CrossRefGoogle ScholarPubMed
Dang, F., Mimura, K., Kato, K., Imai, H., Wada, S., Haneda, H., and Kuwabara, M.: In situ growth BaTiO3 nanocubes and their superlattice from an aqueous process. Nanoscale 4, 1344 (2012).CrossRefGoogle ScholarPubMed
Dang, F., Mimura, K., Kato, K., Imai, H., Wada, S., Haneda, H., and Kuwabara, M.: Growth of monodispersed SrTiO3 nanocubes by thermohydrolysis method. Cryst. Eng. Commun. 13, 3878 (2011).CrossRefGoogle Scholar
Mimura, K., Dang, F., Kato, K., Imai, H., Wada, S., Haneda, H., and Kuwabara, M.: Fabrication of dielectric nanocubes in ordered structure by capillary force assisted self-assembly method and their piezoresponse properties. J. Nanosci. Nanotechnol. 12, 3853 (2012).CrossRefGoogle ScholarPubMed
Mimura, K., Kato, K., Imai, H., Wada, S., Haneda, H., and Kuwabara, M.: Piezoresponse properties of orderly assemblies of BaTiO3 and SrTiO3 nanocube single crystals. Appl. Phys. Lett. 101, 012901 (2012).CrossRefGoogle Scholar
Mimura, K., Kato, K., Imai, H., Wada, S., Haneda, H., and Kuwabara, M.: Fabrication and characterization of dielectric nanocube self-assembled structures. Jpn. J. Appl. Phys. 51, 09LC03 (2012).CrossRefGoogle Scholar
Mimura, K. and Kato, K.: Characteristics of barium titanate nanocubes ordered assembly thin films fabricated by dip-coating method. Jpn. J. Appl. Phys. 52, 09KC06 (2013).CrossRefGoogle Scholar
Mimura, K. and Kato, K.: Fabrication and piezoresponse properties of {100} BaTiO3 films containing highly-ordered nanocube assemblies on various substrates. J. Nanopart. Res. 30, 15 (2013).Google Scholar
Lu, Y. and Miller, J.D.: Carboxyl stretching vibrations of spontaneously adsorbed and LB-transferred calcium carboxylates as determined by FTIR internal reflection spectroscopy. J. Colloid Interface Sci. 256, 41 (2002).CrossRefGoogle Scholar
Aronoff, Y.G., Chen, B., Lu, G., Seto, C., Schwartz, J., and Bernasek, S.L.: Stabilization of self-assembled monolayers of carboxylic acids on native oxides of metals. J. Am. Chem. Soc. 119, 259 (1997).CrossRefGoogle Scholar
Testino, A., Buscaglia, M.T., Buscaglia, V., Viviani, M., Bottino, C., and Nanni, P.: Kinetics and mechanism of aqueous chemical synthesis of BaTiO3 particles. Chem. Mater. 16, 1536 (2004).CrossRefGoogle Scholar
Tomita, K., Petrykin, V., Kobayashi, M., Shiro, M., Yoshimura, M., and Kakihana, M.: A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew. Chem. Int. Ed. 45, 2378 (2006).CrossRefGoogle ScholarPubMed
Mockel, H., Giersig, M., and Willig, F.: Formation of uniform size anatase nanocrystals from bis(ammonium lactato)titanium dihydroxide by thermohydrolysis. J. Mater. Chem. 9, 3051 (1999).CrossRefGoogle Scholar
Dimitrov, A.S. and Nagayama, K.: Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12, 1303 (1996).CrossRefGoogle Scholar
Watanabe, S., Inukai, K., Mizuta, S., and Miyahara, M.T.: Mechanism for stripe pattern formation on hydrophilic surfaces by using convective self-assembly. Langmuir 25, 7287 (2009).CrossRefGoogle ScholarPubMed
Sun, H.P., Tian, W., Pan, X.Q., Haeni, J.H., and Schlom, D.G.: Evolution of dislocation arrays in epitaxial BaTiO3 thin films grown on (100) SrTiO3. Appl. Phys. Lett. 84, 3298 (2004).CrossRefGoogle Scholar
Schwartz, R.W., Clem, P.G., Voigt, J.A., Byhoff, E.R., Stry, M.V., Headley, T.J., and Missert, N.A.: Control of microstructure and orientation in solution-deposited BaTiO3 and SrTiO3 thin films. J. Am. Ceram. Soc. 82, 2359 (1999).CrossRefGoogle Scholar
Hoffmann, S. and Waser, R.: Control of the morphology of CSD-prepared (Ba, Sr)TiO3 thin films. J. Eur. Ceram. Soc. 19, 1339 (1999).CrossRefGoogle Scholar
Harigai, T., Nam, S.M., Kakemoto, H., Wada, S., Saito, K., and Tsurumi, T.: Structural and dielectric properties of perovskite-type artificial superlattices. Thin Solid Films 509, 13 (2006).CrossRefGoogle Scholar
Disch, S., Wetterskog, E., Hermann, R.P., Alvarez, G.S., Busch, P., Bruckel, T., Bergstrom, L., and Kamali, S.: Shape induced symmetry in self-assembled mesocrystals of iron oxide nanocubes. Nano Lett. 11, 1651 (2011).CrossRefGoogle ScholarPubMed
Demortiere, A., Launois, P., Goubet, N., Albouy, P.A., and Petit, C.: Shape-controlled platinum nanocubes and their assembly into two-dimensional and three-dimensional superlattices. J. Phys. Chem. B 112, 14583 (2008).CrossRefGoogle ScholarPubMed
Chan, H., Demortiere, A., Vukovic, L., Kral, P., and Petit, C.: Colloidal nanocube supercrystals stabilized by multipolar coulombic coupling. ASC Nano 6, 4203 (2012).CrossRefGoogle ScholarPubMed
Hong, S., Woo, J., Shin, H., Jeon, J.U., Pak, Y.E., Colla, E.L., Setter, N., Kim, E., and No, K.: Principle of ferroelectric domain imaging using atomic force microscope. J. Appl. Phys. 89, 1377 (2001).CrossRefGoogle Scholar