Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T05:07:34.749Z Has data issue: false hasContentIssue false

Morphological and molecular analyses of larval and adult stages of Echinoparyphium recurvatum von Linstow 1873 (Digenea: Echinostomatidae) from central Mexico

Published online by Cambridge University Press:  17 April 2014

A.L. Sereno-Uribe
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, C. P. 04510, Distrito Federal, México
C.D. Pinacho-Pinacho
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, C. P. 04510, Distrito Federal, México
V. Sanchéz Cordero
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, C. P. 04510, Distrito Federal, México
M. García-Varela*
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, C. P. 04510, Distrito Federal, México
*
*Fax: (525) 5550 0164 E-mail: garciav@unam.mx; garciav@ib.unam.mx

Abstract

In central Mexico, populations of the freshwater snail Physella cubensis were infected with metacercariae from a species of Echinoparyphium (Digenea: Echinostomatidae). In the current study, we describe both larval and adult stages of this species obtained from experimental and natural infections. A total 180 snails were collected from Patzcuaro Lake, Michoacan state in central Mexico in July 2012. In the laboratory snails were placed in individual vials and exposed to light with the aim of observing emergence of cercariae. To obtain metacercariae, uninfected snails (P. cubensis) were exposed to cercariae. Chicks were infected with metacercariae to obtain adults. Nine days post-infection, eggs were recovered and incubated in tap water at room temperature to observe miracidia. Adults obtained from natural and experimentally infected hosts possess a head collar with 45 spines in two alternating rows, confirming the identification as Echinoparyphium recurvatum von Linstow 1873. To test the conspecificity of all stages, sequences of nuclear internal transcribed spacer 1 (ITS1), 5.8S and ITS2 rDNA were obtained from two adult worms recovered from chicks and also a natural avian host, the shoveler duck Anas clypeata, together with five cercarial and four metacercarial isolates from nine snails. The genetic divergence estimated among the 13 isolates was very low, ranging from 0 to 0.6%. Phylogenetic analyses inferred by maximum likelihood and Bayesian methods showed that all isolates of E. recurvatum form a single clade with strong support. The presence of E. recurvatum in P. cubensis and A. clypeata from central Mexico represents new host reports, and extends the distribution range in the Americas.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Detwiler, J.T., Bos, D.H. & Minchella, D.J. (2010) Revealing the secret lives of cryptic species: Examining the phylogenetic relationships of echinostome parasites in North America. Molecular Phylogenetics and Evolution 55, 611620.CrossRefGoogle ScholarPubMed
Farias, J.D. & Canaris, A.G. (1986) Gastrointestinal helminths of the Mexican duck, Anas platyrhynchus diazi, from North, Central México and Southwestern USA. Journal of Wildlife Disease 22, 5154.CrossRefGoogle Scholar
Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. Version 3.0b4. Department of Biology, University of Rochester, Rochester, New York.Google Scholar
Huffman, J.E. & Fried, B. (2012) The biology of Echinoparyphium (Trematoda, Echinostomatidae). Acta Parasitologica 57, 199210.CrossRefGoogle ScholarPubMed
Kanev, I. (1990) A check list of the helminth parasites of Echinis, Echinostoma, Echinostomatidae (Trematoda), with references for their renaming, replacement and reclassification. Sofia, Publishing House of the Bulgarian Academy of Sciences.Google Scholar
Kanev, I., Fried, B. & Radev, V. (2008) Identification problems with species in the Echinoparyphium recurvatum complex from physid snails in the USA. Parasitology Research 103, 963965.CrossRefGoogle ScholarPubMed
Kostadinova, A. & Gibson, D.I. (2000) The systematics of the Echinostomatidae. pp. 3157in Fried, B. & Graczyk, T. (Eds) Echinostomes as experimental models for biological research. Dordrecht, Netherlands, Kluwer Academic Publishers.CrossRefGoogle Scholar
Kostadinova, A., Herniou, E.A., Barret, J. & Litlewood, D.T.J. (2003) Phylogenetic relationship of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) and related genera re-assessed via DNA and morphological analyses. Systematic Parasitology 54, 159176.CrossRefGoogle ScholarPubMed
Lee, S.H., Sohn, W.M. & Chai, J.Y. (1990) Echinostoma revolutum and Echinoparyphium recurvatum recovered from house rats in Yangyang-gun, Kangwon-do. Korean Journal of Parasitology 28, 235240.CrossRefGoogle ScholarPubMed
Luton, K., Walker, D. & Blair, D. (1992) Comparison of ribosomal internal transcribed spacer from two congeneric species of flukes (Plathyhelminthes: Trematoda: Digenea). Molecular and Biochemical Parasitology 56, 323328.CrossRefGoogle Scholar
Maddison, W.P. & Maddison, D.R. (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. Available athttp://mesquiteproject.org (accessed accessed 9 September 2013).Google Scholar
McCarthy, A.M. (1990) Speciation of echinostomes: evidence for the existence of two sympatric sibling species in the complex Echinoparyphium recurvatum (von Linstow, 1873) (Digenea: Echinostomidae). Parasitology 101, 289310.CrossRefGoogle Scholar
Pérez Ponce de León, G., García-Prieto, L. & Mendoza-Garfías, B. (2007) Trematode parasites (Platyhelminthes) of wildlife vertebrates in Mexico. Zootaxa 1534, 1247.CrossRefGoogle Scholar
Posada, D. & Crandall, K.A. (1988) Modeltest: Testing the model of DNA substitution. Bioinformatics 9, 817818.Google Scholar
Rambaut, A. & Drummond, A.J. (2007) Tracer v1.4 2003–2007. MCMC Trace Analysis Package. Available athttp://tree.bio.ed.ac.uk/software/tracer/ (accessed accessed 1 February 2013).Google Scholar
Saijuntha, W., Tantrawatpan, C., Sithithaworn, P., Andrews, R.A. & Teney, T.N. (2011) Genetic characterization of Echinostoma revolutum and Echinoparyphium recurvatum (Trematoda: Echinostomatidae) in Thailand and phylogenetic relationships with other isolates inferred by ITS1 sequences. Parasitology Research 108, 751755.CrossRefGoogle Scholar
Sohn, W.M. (1998) Life history of Echinoparyphium recurvatum (Trematoda: Echinostomatidae) in Korea. Korean Journal of Parasitology 36, 9198.CrossRefGoogle ScholarPubMed
Stamatakis, A. (2006) Raxml-vi-hpc: Maximum likelihood-based phylogenetic with thousands of taxa and mixed models. Bioinformatics 22, 26882690.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 4, 111.Google Scholar
Thompson, J., Higgins, D. & Gibson, T. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Yamaguti, S. (1975) A synoptical review of the life histories of digenetic trematodes of vertebrates. Tokyo, Keingaku.Google Scholar