Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T12:46:08.425Z Has data issue: false hasContentIssue false

Molluscicidal and antiparasitic activity of Solanum nigrumvillosum against Galba truncatula infected or uninfected with Fasciola hepatica

Published online by Cambridge University Press:  01 September 2008

H. Hammami
Affiliation:
Fungal and Parasitic Molecular Biology Laboratory, Faculty of Medicine, Sfax, Tunisia
A. Ayadi*
Affiliation:
Fungal and Parasitic Molecular Biology Laboratory, Faculty of Medicine, Sfax, Tunisia Laboratory of Parasitology Mycology, Hospital Habib Bourguiba, Sfax, Tunisia
*
*Fax: 00216 74 247130 E-mail: ali.ayadi@rns.tn

Abstract

The present study was based on assessments of the molluscicidal and antiparasitic activities of Solanum nigrum villosum. This plant has been collected in Tozeur's traditional oases (south-western Tunisia). Molluscicidal activities of leaves, ripe fruit and unripe fruit extracts of S. n. villosum have been assessed in experimental and semi-field conditions on uninfected Galba truncatula. Antiparasitic activities have also been assessed on larval stages (rediae, intraredial germinal masses and cercariae) of the parasite Fasciola hepatica infecting G. truncatula naturally. The unripe fruit extract (LC50 = 41.2 mg l− 1) was more toxic than the leaf (LC50 = 132.5 mg l− 1) and the ripe fruit (LC50 = 172.8 mg l− 1) extracts on the snail after 48 h of treatment. One mg l− 1 of cupric chloride produced the death of 97% of G. truncatula after 25 days of treatment. Solanum n. villosum extracts used at the lethal laboratory concentration in semi-field conditions were also toxic to G. truncatula. The unripe fruit extract was more toxic than the leaf and the ripe fruit extracts on larval stages of F. hepatica. Maximum deterioration rates were obtained with the unripe fruit extract: 65.6% for rediae, 77.8% for cercariae and 27.6% for intraredial germinal masses after 48 h of treating the snails. The possibility of the unripe fruit extract application for the control of G. truncatula and F. hepatica larval stages should be considered.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, A.H. & Ramzy, R.M. (1997) Laboratory assessment of the molluscicidal and cercaricidal activities of the Egyptian weed, Solanum nigrum L. Annals of Tropical Medicine and Parasitology 91, 931937.Google Scholar
Ahmed, A.H. & Rifaat, M.M. (2004) Molluscicidal and cercaricidal efficacy of Acanthus mollis and its binary and tertiary combinations with Solanum nigrum and Iris pseudacorus against Biomphalaria alexandrina. Journal of the Egyptian Society of Parasitology 34, 10411050.Google ScholarPubMed
Ahmed, A.H. & Rifaat, M.M. (2005) Effects of Solanum nigrum leaves water extract on the penetration and infectivity of Schistosoma mansoni cercariae. Journal of the Egyptian Society of Parasitology 35, 3340.Google ScholarPubMed
Alzerreca, A. & Hart, G. (1982) Molluscicidal steroid glycoalkaloids possessing steroisomeric spirosolane structures. Toxicology Letters 12, 151155.CrossRefGoogle Scholar
Amer, H., Ahmed, A.H. & Ramzy, R.M. (1998) Seasonal variation in molluscicidal activity of Solanum nigrum L. Journal of the Egyptian Society of Parasitology 28, 621629.Google Scholar
Ayadi, A., Makni, F. & Ben Saïd, M. (1997) Etat actuel de la fasciolose en Tunisie. Bulletin de la Société Française de Parasitology 15, 2732.Google Scholar
Bekkouche, K., Markouk, M., Larhsini, M., Jana, M. & Lazrek, H.B. (2000) Molluscicidal properties of glycoalkaloid extracts from Moroccan Solanum species. Phytotherapy Research 14, 366367.Google Scholar
El-Ansary, A., Mohamed, A.M., Mahmoud, S.S. & El-Bardicy, S. (2003) On the pathogenicity of attenuated Schistosoma mansoni cercariae released from metabolically disturbed Biomphalaria alexandrina. Journal of the Egyptian Society of Parasitology 33, 777794.Google Scholar
Esteban, J.G., Bargues, M.D. & Mas-Coma, S. (1998) Geographical distribution, diagnosis and treatment of human fascioliasis: a review. Research and Reviews in Parasitology 58, 1342.Google Scholar
Friedman, M., Rayburn, J.R. & Bantle, J.A. (1991) Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay: Xenopus (FETAX). Food and Chemical Toxicology 29, 537547.Google Scholar
Hammami, H. & Ayadi, A. (1999) Ecologie de Lymnaea truncatula Muller, hôte intermédiaire de Fasciola hepatica Linné dans le microclimat de Tozeur (sud-ouest de la Tunisie). Bulletin de la Société de Pathologie Exotique 92, 302304.Google Scholar
Ihaka, R. & Gentleman, R. (1996) R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 3, 299314.Google Scholar
Marcilla, A., Bargues, M.D. & Mas-Coma, S. (2002) A PCR-RFLP assay for the distinction between Fasciola hepatica and Fasciola gigantica. Molecular and Cellular Probes 16, 327333.CrossRefGoogle ScholarPubMed
Mas-Coma, S., Funatsu, I.R. & Bargues, M.D. (2001) Fasciola hepatica and Lymnaeid snails occurring at very high altitude in South America. Parasitology 123, 115127.Google Scholar
Melendez, P.A. & Capriles, V.A. (2002) Molluscicidal activity of plants from Puerto Rico. Annals of Tropical Medicine and Parasitology 96, 209218.Google Scholar
Pallary, P. (1923) Faune malacologique des eaux douces de la Tunisie. Les Archives de l'Institue Pasteur de Tunis 3, 2247.Google Scholar
Pottier-Alapetite, G. (1981) Flore de la Tunisie. Angiospermes-Dicotylédones Gamopétales. 821 p. Tunis, Imprimerie Officielle de la République Tunisienne.Google Scholar
Rug, M. & Ruppel, A. (2000) Toxic activities of the plant Jatropha curcas against intermediate snail hosts and larvae of schistosomes. Tropical Medicine and International Health 5, 423430.CrossRefGoogle ScholarPubMed
Saber, A.H., Balbaa, S.I. & Zaky, A.Y. (1963) A contribution to the phytochemical study of Solanum nigrum L., S. sodomeum L. and S. aviculare Forst. Bulletin of the Faculty of Pharmacy, Cairo University 2, 5164.Google Scholar
Silva, T.M., Batista, M.M., Camara, C.A. & Agra, M.F. (2005) Molluscicidal activity of some Brazilian Solanum spp. (Solanaceae) against Biomphalaria glabrata. Annals of Tropical Medicine and Parasitology 99, 419425.CrossRefGoogle ScholarPubMed
Silva, T.M., Camara, C.A., Agra, M.de, F., de Carvalho, M.G., Frana, M.T., Brandoline, S.V., da Silva Paschoal, L. & Braz-Filho, R. (2006) Molluscicidal activity of Solanum species of the Northeast of Brazil on Biomphalaria glabrata. Fitoterapia 77, 449452.CrossRefGoogle ScholarPubMed
Udalova, Zh.V., Zinov'eva, S.V., Vasil'eva, I.S. & Paseshnichenko, V.A. (2004) Correlation between the structure of plant steroids and their effects on phytoparasitic nematodes. Applied Biochemistry and Microbiology 40, 9397.CrossRefGoogle Scholar
Wanyonyi, A.W., Chhabra, S.C., Mkoji, G., Njue, W. & Tarus, P.K. (2003) Molluscicidal and antimicrobial activity of Solanum aculeastrum. Fitoterapia 74, 298301.CrossRefGoogle ScholarPubMed
Wei, F.H., Xu, X.J., Liu, J.B., Dai, Y.H., Dussart, G. & Trigwell, J. (2002) Toxicology of a potential molluscicide derived from the plant Solanum xanthocarpum: a preliminary study. Annals of Tropical Medicine and Parasitology 96, 325331.Google Scholar
Weissenberg, M. (2001) Isolation of solasodine and other steroidal alkaloids and sapogenins by direct hydrolysis-extraction of Solanum plants or glycosides therefrom. Phytochemistry 58, 501508.CrossRefGoogle ScholarPubMed
World Health Organization (1965) Molluscicide screening and evaluation. Bulletin of the World Heath Organization 33, 567581.Google Scholar