Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-21T04:43:55.345Z Has data issue: false hasContentIssue false

Infection levels of plerocercoids of the tapeworm Triaenophorus crassus and feeding strategy in two fish species from the ultra-oligotrophic Lake Achensee, Austria

Published online by Cambridge University Press:  27 October 2014

Z. Schähle*
Affiliation:
Tyrolean Fisheries Association, Ing.-Etzel-Strasse 63, 6020Innsbruck, Austria University of Innsbruck, Institute of Ecology, Technikerstrasse 25, 6020Innsbruck, Austria
N. Medgyesy
Affiliation:
University of Innsbruck, Institute of Ecology, Technikerstrasse 25, 6020Innsbruck, Austria
R. Psenner
Affiliation:
University of Innsbruck, Institute of Ecology, Technikerstrasse 25, 6020Innsbruck, Austria

Abstract

Thus far, high burdens of Triaenophorus crassus plerocercoids have been reported only in old age groups of coregonid and salmonid fishes. Here we show heavy infection with T. crassus in young whitefish Coregonus lavaretus in the ultra-oligotrophic and regulated Achensee in Tyrol, Austria. Prevalence of T. crassus on C. lavaretus was 100% in all age groups and abundance significantly increased with fish age. The mean annual accumulation of T. crassus was 5.2 parasites in 0- to 7-year-old C. lavaretus, and 2-year-old specimens already harboured a mean of 19.4 plerocercoids. In Arctic charr Salvelinus umbla, however, the prevalence of T. crassus was less than 16% and the majority of infected fish contained only one or two plerocercoids. Triaenophorus nodulosus was present neither in C. lavaretus nor in S. umbla. We assume that the heavy T. crassus infection in C. lavaretus is largely related to their zooplankton-dominated diet and to the characteristics of Achensee, while habitat choice and feeding strategy of the S. umbla population are seen to be the main reasons for their low burdens of T. crassus.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achleitner, D., Gassner, H. & Schabetsberger, R. (2009) ‘Global worming’: first record of an epidemic of Triaenophorus crassus in a population of Arctic charr Salvelinus umbla. Journal of Fish Biology 74, 961966.CrossRefGoogle Scholar
Amundsen, P.-A. & Kristoffersen, R. (1990) Infection of whitefish (Coregonus lavaretus L. s.l.) by Triaenophorus crassus Forel (Cestoda: Pseudophyllidea): a case study in parasite control. Canadian Journal of Zoology 68, 11871192.CrossRefGoogle Scholar
Amundsen, P.-A., Gabler, H.-M. & Staldvik, F.J. (1996) A new approach to graphical analysis of feeding strategy from stomach contents data – modification of the Costello (1990) method. Journal of Fish Biology 48, 607614.CrossRefGoogle Scholar
Amundsen, P.-A., Knudsen, R. & Klemetsen, A. (2008) Seasonal and ontogenetic variations in resource use by two sympatric Arctic charr morphs. Environmental Biology of Fishes 83, 4555.CrossRefGoogle Scholar
Anegg, P., Psenner, R. & Tartarotti, B. (2014) Infestation of zooplankton with Triaenophorus and Proteocephalus procercoids (Cestoda) in a deep oligotrophic lake. Journal of Limnology, in press. doi:10.4081/jlimnol.2014.1021.CrossRefGoogle Scholar
Beiwl, C. & Mühlmann, H. (2008) Atlas der natürlichen Seen Österreichs mit einer Fläche ≥ 50 ha. Schriftenreihe des Bundesamtes für Wasserwirtschaft 29, 123125.Google Scholar
Bérubé, M. & Curtis, M.A. (1986) Transmission of Diphyllobothrium ditremum to Arctic char (Salvelinus alpinus) in two subarctic Quebec lakes. Canadian Journal of Fisheries and Aquatic Sciences 43, 16261634.CrossRefGoogle Scholar
Brinker, A. & Hamers, R. (2007) Evidence for negative impact of plerocercoid infection of Triaenophorus nodulosus on Perca fluviatilis L. stock in Upper Lake Constance, a water body undergoing rapid reoligotrophication. Journal of Fish Biology 71, 129147.CrossRefGoogle Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Dahl-Hansen, G.A.P., Rubach, S.H. & Klemetsen, A. (1994) Selective predation by pelagic Arctic char on crustacean plankton in Takvatn, Northern Norway, before and after mass removal of arctic char. Transactions of the American Fisheries Society 123, 385394.2.3.CO;2>CrossRefGoogle Scholar
Dick, T.A. & Rosen, R. (1982) Experimental infections of whitefish, Coregonus clupeaformis (Mitchill), with Triaenophorus crassus Forel. Journal of Fish Disease 5, 8386.CrossRefGoogle Scholar
Eloranta, A.P., Kahilainen, K.K. & Jones, R.I. (2010) Seasonal and ontogenetic shifts in the diet of Arctic charr Salvelinus alpinus in a subarctic lake. Journal of Fish Biology 77, 8097.CrossRefGoogle Scholar
Eloranta, A.P., Siwertsson, A., Knudsen, R. & Amundsen, P.-A. (2011) Dietary plasticity of Arctic charr (Salvelinus alpinus) facilitates coexistence with competitively superior European whitefish (Coregonus lavaretus). Ecology of Freshwater Fish 20, 558568.CrossRefGoogle Scholar
Gassner, H. & Achleitner, D. (2006) Fischbestandserhebung des Achensees. BAW-Institut für Gewässerökologie, Fischereibiologie und Seenkunde, Mondsee, Austria.Google Scholar
Goater, C.P., Baldwin, R.E. & Scrimgeour, G.J. (2005) Physico-chemical determinants of helminth component community structure in whitefish (Coregonus clupeaformes) from adjacent lakes in Northern Alberta, Canada. Parasitology 131, 713722.CrossRefGoogle ScholarPubMed
Hofer, R. & Medgyesy, N. (1997) Growth, reproduction and feeding of dwarf Arctic char, Salvelinus alpinus, from an Alpine high mountain lake. Archiv für Hydrobiologie 138, 509524.CrossRefGoogle Scholar
Karvonen, A. & Valtonen, E.T. (2004) Helminth assemblages of whitefish (Coregonus lavaretus) in interconnected lakes: similarity as a function of species specific parasites and geographical separation. Journal of Parasitology 90, 471476.CrossRefGoogle ScholarPubMed
Knudsen, R., Klemetsen, A. & Staldvik, F. (1996) Parasites as indicators of individual feeding specialization in Arctic charr during winter in northern Norway. Journal of Fish Biology 48, 12561265.CrossRefGoogle Scholar
Knudsen, R., Amundsen, P.-A., Nilsen, R., Kristoffersen, R. & Klemetsen, A. (2008) Food borne parasites as indicators of trophic segregation between Arctic charr and brown trout. Environmental Biology of Fishes 83, 107116.CrossRefGoogle Scholar
Knudsen, R., Amundsen, P.-A. & Klemetsen, A. (2010) Arctic charr in sympatry with burbot: ecological and evolutionary consequences. Hydrobiologia 650, 4354.CrossRefGoogle Scholar
Kuperman, B.I. (1981) Tapeworms of the genus Triaenophorus – parasites of fish. 222 pp.New Delhi, Amerind.Google Scholar
Lahnsteiner, F., Kletzl, M. & Weismann, T. (2009) The risk of parasite transfer to juvenile fishes by live copepod food with the example Triaenophorus crassus and Triaenophorus nodulosus. Aquaculture 295, 120125.CrossRefGoogle Scholar
Marcogliese, D.J. & Cone, D.K. (1991) Importance of lake characteristics in structuring parasite communities of salmonids from insular Newfoundland. Canadian Journal of Zoology 69, 29622967.CrossRefGoogle Scholar
Miller, R.B. (1945a) Studies on cestodes of the genus Triaenophorus from fish of Lesser Slave Lake, Alberta. I. Introduction and the life of Triaenophorus crassus Forel and T. nodulosus (Pallas) in the definitive host, Esox lucius. Canadian Journal of Research 21, 160170.Google Scholar
Miller, R.B. (1945b) Studies on cestodes of the genus Triaenophorus from fish of Lesser Slave Lake, Alberta. IV. The life of Triaenophorus crassus Forel in the second intermediate host. Canadian Journal of Research 23, 105115.CrossRefGoogle Scholar
Molzen, B.U. (2005) Die Auswirkung des Befalls mit Plerocercoiden des Hechtbandwurms (Triaenophorus nodulosus (P.)) auf den Flussbarsch (Perca fluviatilis L.) im Bodensee-Obersee. PhD thesis, Institut für Zoologie, Fischereibiologie und Fischkrankheiten, Ludwig-Maximilians-Universität, Munich.Google Scholar
Petersson, A. (1971) The effect of lake regulation on populations of Cestodan parasites of Swedish whitefish Coregonus. Oikos 22, 7483.CrossRefGoogle Scholar
Pulkkinen, K. & Valtonen, E.T. (1999) Accumulation of plerocercoids of Triaenophorus crassus in the second intermediate host Coregonus lavaretus and their effect on growth of the host. Journal of Fish Biology 55, 115126.Google Scholar
Pulkkinen, K., Valtonen, E.T., Niemi, A. & Poikola, K. (1999) The influence of food competition and host specificity on the transmission of Triaenophorus crassus (Cestoda) and Cystidicola farionis (Nematoda) to Coregonus lavaretus and Coregonus albula (Pisces:Coregonidae) in Finland. International Journal for Parasitology 29, 17531763.CrossRefGoogle Scholar
Rosen, R. & Dick, T.A. (1984) Growth and migration of plerocercoids of Triaenophorus crassus Forel and pathology in experimentally infected whitefish, Coregonus clupeaformis (Mitchill). Canadian Journal of Zoology 62, 203211.CrossRefGoogle Scholar
Schäperclaus, W. (1990) Fischkrankheiten. 5th edn.1123 pp.Berlin, Akademie-Verlag.Google Scholar
Schulz, N. (1979) Studies on the food uptake of the coregonids (Coregonus wartmanni BLOCH) (Pisces: Salmonidae) in the lake Achensee (Tyrol, Austria). Berichte des naturwissenschaftlichen-medizinischen Verein Innsbruck 66, 109124.Google Scholar
Sichrowsky, U., Schabetsberger, R., Gassner, H., Kaiser, R., Boufana, B. & Psenner, R. (2013) Cradle or plague pit? Illuminated cages increase the transmission risk of parasites from copepods to coregonids. Aquaculture 392–395, 815.CrossRefGoogle Scholar
Watson, N.H.F. & Lawler, G.H. (1965) Natural infections of cyclopid copepods with procercoids of Triaenophorus spp. Journal of the Fisheries Research Board of Canada 22, 13351343.CrossRefGoogle Scholar