Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T23:54:41.093Z Has data issue: false hasContentIssue false

How agricultural land use affects the abundance and prevalence of monoxenous and heteroxenous helminths in the generalist lizard Tropidurus hispidus

Published online by Cambridge University Press:  23 June 2023

Ana Carolina Brasileiro*
Affiliation:
Universidade Federal do Ceará (UFC), Biology Department, Post-Graduation Program in Ecology and Natural Resources, Avenida Humberto Monte, s/n, 60455-760, Fortaleza, Ceará, Brazil
Elvis Franklin Fernandes de Carvalho
Affiliation:
Universidade Federal do Ceará (UFC), Biology Department, Post-Graduation Program in Ecology and Natural Resources, Avenida Humberto Monte, s/n, 60455-760, Fortaleza, Ceará, Brazil
*
Corresponding Author: Ana Carolina Brasileiro; Email: carolbrmelo@hotmail.com

Abstract

Among the forms of anthropogenic disturbance, agricultural land use is one of the main threats to biodiversity. Understanding how interactions between parasites and hosts are affected by agricultural land use allows predictions of how these anthropogenic impacts affect parasites. Although parasitism patterns are affected by agricultural land use, it is noteworthy that different groups of parasites can respond differently to these environmental alterations. While heteroxenous species need more than one host to complete their life cycle and tend to be more harmed by anthropization, monoxenous species, which need only one host to complete their life cycle, tend to be less harmed. In this work, we evaluate how agricultural land use affects the abundance and prevalence of parasitism for monoxenous and heteroxenous helminths in the generalist lizard Tropidurus hispidus in Caatinga Domain, Brazil. We recorded differences in abundance and prevalence of heteroxeneous (higher in conserved areas) and monoxenous helminths (higher in agricultural areas). Heteroxenous helminths that have lizards as definitive hosts are mainly obtained through diet. Tropidurus hispidus predominantly consumes insects, so it is possible that the lower abundance and prevalence of heteroxenous parasites in agricultural areas, beyond habitat simplification, is related to the decrease in the insect population. As monoxenous species do not need an intermediate host, it is possible that this aspect has influenced their greater success in anthropogenic environments than heteroxenous species. This contrasting result reinforces the need for a separate assessment between these groups when evaluating effects of land use.

Type
Short Communication
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albuquerque, RL, Protázio, AS, Cavalcanti, LBQ, Lopez, LCS, Mesquita, DO (2018). Geographical ecology of Tropidurus hispidus (Squamata: Tropiduridae) and Cnemidophorus ocellifer (Squamata: Teiidae) in a neotropical region: a comparison among Atlantic Forest, Caatinga, and Coastal Populations. Journal of Herpetology 52, 2, 145155. https://doi.org/10.1670/16-018CrossRefGoogle Scholar
Almeida-Gomes, M, Rocha, CFD (2014). Diversity and distribution of lizards in fragmented Atlantic Forest landscape in Southeastern Brazil. Journal of Herpetology 48, 3, 423429. https://doi.org/10.1670/12-187CrossRefGoogle Scholar
Anderson, C (2000). Nematode Parasites of Vertebrates. Their Development and Transmission. 672 pp. Wallingford: Cab International.CrossRefGoogle Scholar
Anderson, RC, Chabaud, AG, Willmon, S (2009). Keys to the Nematode Parasites of Vertebrates. 416 pp. London: Cab international.CrossRefGoogle Scholar
Andrade, AC (2019). Metropolitan lizards? Urbanization gradient and the density of lagartixas (Tropidurus hispidus) in a tropical city. Ecology and Evolution 10, 2, 111. https://doi.org/10.1002/ece3.5518Google Scholar
Becker, DJ, Streicker, DG, Altizer, S (2015). Linking anthropogenic resources to wildlife-pathogen dynamics: a review and meta-analysis. Ecology Letters 18, 5, 483495. https://doi.org/10.1111/ele.12428CrossRefGoogle ScholarPubMed
Brito, SV, Corso, G, Almeida, AM, Ferreira, FS, Almeida, WO, Anjos, DG et al. (2014). Phylogeny and micro-habitats utilized by lizards determine the composition of their endoparasites in the semiarid Caatinga of Northeast Brazil. Parasitology Research 113, 39633972. https://doi.org/10.1007/s00436-014-4061-zCrossRefGoogle ScholarPubMed
Bursey, CR, Rocha, CF, Menezes, VA, Ariani, CV, Vrcibradic, D (2010). New species of Oochoristica (Cestoda; Linstowiidae) and other endoparasites of Trachylepis atlantica (Sauria: Scincidae) from Fernando de Noronha Island, Brazil. Zootaxa 2715, 4554. https://doi.org/10.11646/zootaxa.2715.1.3CrossRefGoogle Scholar
Bush, AO, Lafferty, KD, Lotz, JM, Shostak, AW (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology 83, 4, 575583.CrossRefGoogle Scholar
Caitano, RF, Lopes, FB, Teixeira, AS (2011). Estimativa da aridez no Estado do Ceará usando Sistemas de Informação Geográfica. Anais XV Simpósio Brasileiro de Sensoriamento Remoto 8.904–8.911Google Scholar
Castro, DP, Rodrigues, JFM, Borges-Leite, MJ, Lima, DC, Borges-Nojosa, DM (2019). Anuran diversity indicates that Caatinga relictual neotropical forests are more related to the Atlantic Forest than to the Amazon. PeerJ 6, e6208. https://doi.org/10.7717/peerj.6208CrossRefGoogle Scholar
Crump, ML, Scott, NJ Jr (1994). Visual encounter surveys. pp. 8491. In Heyer, WR, Donnelly, MAR, Mcdiarmid, W, Hayek, LAC & Foster, MS (eds), Measuring and Monitoring Biological Diversity–Standard Methods for Amphibians. Washington, DC: Smithsonian Institution Press.Google Scholar
Ellis, EC, Goldewijk, KK, Siebert, S, Lightman, D, Ramankutty, N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography 19, 5, 589606. https://doi.org/10.1111/j.1466-8238.2010.00540.xGoogle Scholar
Fernandes, BMM, Kohn, A (2014). South American Trematodes Parasites of Amphibians and Reptiles. 226 pp. Rio de Janeiro: Oficina de Livros.Google Scholar
Flores, LMA, Zanette, LRS, Araujo, FS (2017). Effects of habitat simplification on assemblages of cavity nesting bees and wasps in a semiarid neotropical conservation area. Biodiversity and Conservation 27, 311328. https://doi.org/10.1007/s10531-017-1436-3CrossRefGoogle Scholar
Gibson, DI, Jones, A, Bray, RA (2002). Keys to the Trematoda, Volume 1. 544 pp. London: The Natural History Museum.CrossRefGoogle Scholar
Hewitt, J, Thrush, S, Lohrer, A, Townsend, MA (2010). A latent threat to biodiversity: consequences of small-scale heterogeneity loss. Biodiversity and Conservation 19, 13151323. https://doi.org/10.1007/s10531-009-9763-7CrossRefGoogle Scholar
Kelehear, C, Brown, GP, Shine, R (2012). Rapid evolution of parasite life history traits on an expanding range-edge. Ecology Letters 15, 4, 329337. https://doi.org/10.1111/j.1461-0248.2012.01742.xCrossRefGoogle Scholar
Kiesecker, JM (2002). Synergism between trematode infection and pesticide exposure: a link to amphibian limb deformities in nature? Proceedings of the National Academy of Sciences of the United States of America 99, 15, 99009904. https://doi.org/10.1073/pnas.152098899CrossRefGoogle ScholarPubMed
King, KC, Mclaughlin, JD, Boily, M, Marcogliese, DJ (2010). Effects of agricultural landscape and pesticides on parasitism in native bullfrogs. Biological Conservation 143, 2, 302310. https://doi.org/10.1016/j.biocon.2009.10.011CrossRefGoogle Scholar
King, KC, McLaughlin, JD, Gendron, AD, Pauli, BD, Giroux, I, Rondeau, B et al. (2007). Impacts of agriculture on the parasite communities of northern leopard frogs (Rana pipiens) in southern Quebec, Canada. Parasitology 134, Pt. 14, 20632080. https://doi.org/10.1017/S0031182007003277CrossRefGoogle ScholarPubMed
Kolodiuk, MF, Ribeiro, LB, Freire, EMX (2009). The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata: Tropiduridae) living in sympatry in the Caatinga of northeastern Brazil. Zoologia 26, 3, 581585.CrossRefGoogle Scholar
Lafferty, KD (1997). Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitology Today 13, 7, 251255.CrossRefGoogle ScholarPubMed
Marcogliese, DJ, King, KC, Salo, HM, Fournier, M, Brousseau, P, Spear, P. et al. (2009). Combined effects of agricultural activity and parasites on biomarkers in the bullfrog, Rana catesbeiana. Aquatic Toxicology 9, 2, 126134. https://doi.org/10.1016/j.aquatox.2008.10.001CrossRefGoogle Scholar
Mckenzie, VJ (2007). Human land use and patterns of parasitism in tropical amphibian hosts. Biological Conservation 137, 1, 102116. https://doi.org/10.1016/j.biocon.2007.01.019CrossRefGoogle Scholar
McKenzie, VJ, Townsend, AR (2007). Parasitic and infectious disease responses to changing global nutrient cycles Ecohealth 4, 384396. https://doi.org/10.1007/s10393-007-0131-3CrossRefGoogle Scholar
Medeiros, JF, Cestaro, LA (2019). As diferentes abordagens para definir brejos de altitude, áreas de exceção do nordeste brasileiro. Sociedade e Território 31, 2, 97119. https://doi.org/10.21680/2177-8396.2019v31n2ID16096CrossRefGoogle Scholar
Moro, MF, Macedo, MB, Moura-Fé, MM, Castro, ASF, Costa, RC (2015). Vegetação, unidades fitoecológicas e diversidade paisagística do estado do Ceará. Rodriguésia 66, 3, 717743. https://doi.org/10.1590/2175-7860201566305CrossRefGoogle Scholar
Portela, AAB, dos Santos, TG, dos Anjos, LA (2020). Changes in land use affect anuran helminth in the South Brazilian grasslands. Journal of Helminthology 94, 111. https://doi.org/10.1017/S0022149X20000905CrossRefGoogle ScholarPubMed
Prado, D (2003). As caatingas da América do Sul. pp 373 In Leal, IR, Tabarelli, M, Silva, JMC (Eds) Ecologia e conservação da Caatinga. Recife: Editora Universitária da UFPE.Google Scholar
Queiroz, LP, Cardoso, D, Fernandes, MF, Moro, MF (2017). Diversity and evolution of flowering plants of the Caatinga Domain. pp 2363. In Silva, JMC, Leal, IR, Tabarelli, M (Orgs) The Largest Tropical Dry Forest Region in South America. Cham, Switzerland: Springer Publishing International.Google Scholar
Rogan, JE, Lacher, TE (2018). Impacts of Habitat Loss and Fragmentation on Terrestrial Biodiversity. Reference Module in Earth Systems and Environmental Sciences. Amsterdam: Elsevier Inc.Google Scholar
Santos, AMM, Cavalcanti, DR, Silva, JMC, Tabarelli, M ( 2007). Biogeographical relationships among tropical forests in north-eastern Brazil. Journal of Biogeography 34, 3, 437446. https://doi.org/10.1111/j.1365-2699.2006.01604.xCrossRefGoogle Scholar
Santos, FA (2018). Análise Integrada da Paisagem em Trabalho de Campo no Parque Nacional de Sete Cidades (PI). Geografia 27, 1, 103119.Google Scholar
LAC, Santos, Miranda, SC, CMS, Neto (2020). Fitofisionomias do Cerrado stricto sensu: definições e tendências. Élisée - Revista de Geografia da UEG 9, 2, e922022. https://www.revista.ueg.br/index.php/elisee/article/view/10907Google Scholar
Sillero, N, Argaña, E, Matos, C, Franch, M, Kaliontzopoulou, K, Carretero, MA (2020). Local segregation of realised niches in lizards. International Journal of Geo-Information 9, 12, 764. https://doi.org/10.3390/ijgi9120764CrossRefGoogle Scholar
QGIS Development Team (2019). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.orgGoogle Scholar
Rêgo, AA, Ibáñez, HN (1965). Duas novas espécies de Oochoristica, parasitas de lagartixas do Peru: (Cestoda, Anoplocephalidae). Memórias do Instituto Oswaldo Cruz 63, 6773.CrossRefGoogle Scholar
Ribeiro, LB, Freire, EM (2011). Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata, Tropiduridae) in a Caatinga area of northeastern Brazil. Iheringia Série Zoologia 101, 3, 225–32. https://doi.org/10.1590/S0073-47212011000200010CrossRefGoogle Scholar
Ribeiro, LB, Silva, NB, Freire, EMX (2012). Reproductive and fat body cycles of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata: Tropiduridae) in a caatinga area of northeastern Brazil. Revista Chilena de Historia Natural. 85, 3, 307320.CrossRefGoogle Scholar
Silva, LAF, Manoel, PS, Uieda, VS, Ávila, RW, da Silva, RJ (2019). Spatio-temporal variation in diet and its association with parasitic helminth in Ameivula pyrrhogularis (Squamata: Teiidae) from northeast Brazil. Herpetological Conservation and Biology 14, 325336.Google Scholar
Spaan, D, Ramos-Fernández, G, Bonilla-Moheno, M, Schaffner, CM, Morales-Mávil, JE, Slater, K, Aureli, F (2020). Anthropogenic habitat disturbance and food availability affect the abundance of an endangered primate: a regional approach. Mammalian Biology 100, 325333. https://doi.org/10.1007/s42991-020-00025-xCrossRefGoogle Scholar
Thawley, CJ, Moniz, HA, Merritt, AJ, Battles, AC, Michaelides, SN, Kolbe, JJ (2019). Urbanization affects body size and parasitism but not thermal preferences in Anolis lizards. Journal of Urban Ecology 5, 1, juy031. https://doi.org/10.1093/jue/juy031CrossRefGoogle Scholar
Veloso, A, Sampaio, EVSB, Giulietti, AM, Barbosa, MRV, Castro, AAJF, Queiroz, LP, et al. (2002). Ecorregiões propostas para o bioma Caatinga. Instituto de Conservação Ambiental, The Nature Conservancy do Brasil. Aldeia: Associação Plantas do Nordeste.Google Scholar
Vicente, JJ, Rodrigues, HO, Gomes, DC, Pinto, RM (1993). Nematoides do Brasil. Parte III: Nematoides de Répteis. Revista Brasileira de Zoologia 10, 1, 19168.CrossRefGoogle Scholar
Vidal-Martínez, VM, Pech, D, Sures, B, Purucker, ST, Poulin, R ( 2010 ). Can parasites really reveal environmental impact? Trends in Parasitology 26, 1, 4451. https://doi.org/10.1016/j.pt.2009.11.001CrossRefGoogle ScholarPubMed
Vitt, LJ, Avila-Pires, TC, Caldwell, JP, Oliveira, VRL (1998). The impact of individual tree harvesting on thermal environments of lizards in Amazonian rain forest. Conservation Biology 12, 3, 654664. https://www.jstor.org/stable/2387247CrossRefGoogle Scholar
Werner, CS, Nunn, CL (2020). Effect of urban habitat use on parasitism in mammals: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences 287, 1927, 20200397. https://doi.org/10.1098/rspb.2020.0397CrossRefGoogle ScholarPubMed
Whitbeck, KL, Oetter, DR, Perry, DA, Fyles, JW (2016). Interactions between macroclimate, microclimate, and anthropogenic disturbance affect the distribution of aspen near its northern edge in Quebec: implications for climate change related range expansions. Forest Ecology and Management 368, 2, 194206. https://doi.org/10.1016/j.foreco.2016.03.013CrossRefGoogle Scholar