Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-03T17:35:20.654Z Has data issue: false hasContentIssue false

Helminth parasites of the chub mackerel Scomber colias off the Tunisian coast and their use in stock discrimination

Published online by Cambridge University Press:  20 February 2017

M. Feki*
Affiliation:
Laboratoire de Biodiversité et Ecosystèmes Aquatiques, Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax, Tunisie
M. Châari
Affiliation:
Laboratoire de Biodiversité et Ecosystèmes Aquatiques, Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax, Tunisie
L. Neifar
Affiliation:
Laboratoire de Biodiversité et Ecosystèmes Aquatiques, Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax, Tunisie
L. Boudaya
Affiliation:
Laboratoire de Biodiversité et Ecosystèmes Aquatiques, Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax, Tunisie

Abstract

Nine helminth parasites were used as biological tags to discriminate diverse areas of Scomber colias Gmelin, 1789. During three seasons, a total of 369 fish were examined in four zones off the Tunisian coast, including Bizerte in the north, Kelibia and Mahdia in the centre and Zarzis in the south. Discriminant analyses were used to identify distinct areas of S. colias. Fish from Bizerte were grouped as one area and were correlated negatively with the monogenean Grubea cochlear and the digenean Lecithocladium excisum. Specimens from Kelibia and Mahdia were grouped together and were characterized by the ectoparasite Pseudokuhnia minor and by endoparasites Prodistomum orientalis, Monascus filiformis and anisakid larvae. Fish from Zarzis were grouped as one area and were positively correlated with the monogenean G. cochlear and the digenean L. excisum. These results were corroborated by comparing the prevalence and mean abundance of parasites among zones. Results of other discriminant analyses used for the classification of S. colias between localities after pooling specimens from the central areas of Kelibia and Mahdia also allowed the identification of three distinct areas: one in the north, correlated negatively with G. cochlear and L. excisum; one in the centre, characterized by P. minor, P. orientalis, M. filiformis and anisakid larvae; and one in the south, from Zarzis, characterized by G. cochlear and L. excisum. Results of comparisons of infection parameters between seasons and those of seasonal discrminant analyses showed a seasonal stability of communities from the northern and the southern areas. Specimens from the central regions showed variability between seasons, suggesting migratory movements.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akmirza, A. (2013) Monogeneans of fish near Gökçeada, Turkey. Turkish Journal of Zoology 37, 441448.Google Scholar
Alioua, M. & Harzallah, A. (2008) Imbrication d'un modèle de circulation des eaux près des côtes tunisiennes dans un modèle de circulation de la mer Méditerranée. Bulletin de l'Institut National des Sciences et Technologies de la Mer 35, 169176.Google Scholar
Allen, M.J., Wolotira, R.J., Sample, T.M., Noel, S.F. & Iten, C.R. (1990). West Coast of North America Coastal and Oceanic Zones Strategic Assessment: data atlas. Invertebrates and fish. Seattle, Washington, NOAA.Google Scholar
Antonelli, L. & Marchand, B. (2012) Metazoan parasites of the European Sea Bass Dicentrarchus labrax (Linnaeus 1758) (Pisces: Teleostei) from Corsica. Chapter 2 in Carvalho, E.D., David, G.S. & Silva, R.J. (Eds) Health and environment in aquaculture. InTech. Available at http://www.intechopen.com/books/healthand-environment-in-aquaculture/metazoan-parasites-of-cultured-european-sea-bass-dicentrarchus-labraxlinneaus-1758-from-corsica. Google Scholar
Arthur, J.R. (1997) Recent advances in the use of parasites as biological tags for marine fish. pp. 141154 in Flegel, T.W. & MacRae, I.H. (Eds) Diseases in Asian aquaculture III. Manila, Philippines, Fish Health Section, Asian Fisheries Society.Google Scholar
Avdeev, V.V. & Avdeev, G.V. (1989) The study of population pattern and migration route of the Sea of Okhotsk pollock by parasitologic indication technique. pp. 6775 in Investigation in parasitology. Collection of Papers, Academy of Sciences of the USSR, Far East Branch, Institute of Biology and Pedology, Vladivostock,.Google Scholar
Ben Abdallah, L. & Gaamour, A. (2004) Répartition géographique et estimation de la biomasse des petits pélagiques des côtes tunisiennes. Bulletin de l'Institut National des Sciences et Technologies de la Mer 5, 2838.Google Scholar
Ben Mustapha, K. & Afli, A. (2001) Quelques traits de la biodiversité marine de la Tunisie. Proposition d'aires de conservation et de gestion. Bulletin de l'Institut National des Sciences et Technologies de la Mer 5, 3255.Google Scholar
Ben Othman, S. (1973) Le Sud Tunisien (Golfe de Gabès): hydrologie, sédimentologie, flore et faune . PhD thesis, University of Tunis, Tunisia.Google Scholar
Binet, D. (1995) Hypotheses accounting for the variability of Sardinella abundance in the northern Gulf of Guinea. pp. 98133 in Bard, F.X. & Koranteg, K.A. (Eds) Dynamique et usage des ressources en sardinelles de l'upwelling côtier du Ghana et de la Côte d'Ivoire. Paris, Orstom.Google Scholar
Blahoua, K.G., N'Douba, V., Kone, T. & Kouassi, N J. (2009) Variations saisonnières des indices épidémiologiques de trois Monogènes parasites de Sarotherodon melanotheron (Pisces: Cichlidae) dans le lac d'Ayamé I (Côte d'Ivoire). Science & Nature 6, 3947.CrossRefGoogle Scholar
Blažek, R., Jarkovský, J., Koubková, B. & Gelnar, M. (2008) Seasonal variation in parasite occurrence and microhabitat distribution of monogenean parasites of gudgeon Gobio gobio (L.). Helminthologia 45, 185191.CrossRefGoogle Scholar
Boje, J. (1987) Parasites as natural tags on Cod (Gadus morhua L.) in Greenland waters. pp. 94101 in Stenmark, A. & Malmberg, G. (Eds) Parasites and diseases in natural waters and aquaculture in Nordic countries.Google Scholar
Boje, J., Riget, F. & Køie, M. (1997) Helminth parasites as biological tags in population studies of Greenland halibut (Reinhardtius hippoglossoides (Walbaum)), in the north-west Atlantic. ICES. Journal of Marine Science 54, 886895.Google Scholar
Bourgeois, C.E. & Ni, H.I. (1984) Metazoan parasites of Northwest Atlantic redfishes (Sebastes spp.). Canadian Journal of Zoology 62, 18791885.Google Scholar
Braicovich, P.E. & Timi, J.T. (2008) Parasites as biological tags for stock discrimination of the Brazilian flathead in the South West Atlantic. Journal of Fish Biology 73, 557571.Google Scholar
Brandhorst, W. (1977) Les conditions du milieu au large de la côte tunisienne. Bulletin de l'Institut National des Sciences et Technologies de la Mer 4, 129220.Google Scholar
Bray, R.A. & Gibson, D.I. (1997) The Leporeadiidae Odhner, 1905 (Digenea) of fishes from the north-east Atlantic: summary paper, with keys and checklists. Systematic Parasitology 36, 223228.CrossRefGoogle Scholar
Bray, R.A. & Gibson, D.I. (1999) The Lepocreadiidae (Digenea) of fishes of the north-east Atlantic: review of the genera Opechona Looss, 1907 and Prodistomum Linton, 1910. Systematic Parasitology 15, 159202.Google Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Parasitology 83, 575583.Google Scholar
Chenoweth, J.H., McGladdery, S.E., Sindermann, C.J., Sawyer, T.K. & Bier, J.W. (1986) An investigation into the usefulness of parasites as tags for herring (Clupea harengus) stocks in the western North Atlantic, with emphasis on use of the larval nematode Anisakis simplex . Journal of Northwest Atlantic Fishery Science 7, 2534.Google Scholar
Čikeš Keč, V. & Zorica, B. (2012) The reproductive traits of Scomber japonicas (Houttuyn, 1987) in the Eastern Adriatic Sea. Journal of Applied Ichthyology 28, 1521.CrossRefGoogle Scholar
Costa, G., Cavallero, S., D'Amelio, S., Paggi, L., Santamaria, M.T.G., Perera, C.B., Santos, M.J. & Khadem, M. (2011) Helminth parasites of the Atlantic chub mackerel, Scomber colias Gmelin, 1789 from Canary Islands, Central North Atlantic, with comments on their relations with other Atlantic regions. Acta Parasitologica 56, 98104.Google Scholar
Crone, P.R., Hill, K.T., McDaniel, J.D. & Lo, N.C.H. (2009) Pacific mackerel (Scomber japonicus) stock assessment for USA management in the 2009–10 fishing year. Portland, Oregon, Pacific Fishery Management Council.Google Scholar
Diaz-Briz, L., Martorelli, S., Genzano, G. & Mianzan, H. (2012) Parasitism (Trematoda, Digenea) in medusae from the southwestern Atlantic Ocean, medusa hosts, parasite prevalences, and ecological implications. Hydrobiologia 690, 215226.Google Scholar
Derbel, H., Châari, M. & Neifar, L. (2012) Digenean species diversity in teleost fishes from the gulf of Gabes, Tunisia (Western Mediterranean). Parasites 19, 129135.CrossRefGoogle ScholarPubMed
Dumke, A. (1988) Investigations on the occurrence of Anisakis sp. larvae within the muscle flesh from blue whiting (Micromesistius poutassou, Risso) of the Northeast Atlantic. International Council for the Exploration of the Sea (ICES) C.M. 1988/H:67.Google Scholar
Eltink, A. (1988) Anisakis larvae (Nematoda: Ascaridida) in mackerel (Scomber scombrus L.) in ICES Sub-areas IV, VI, VII, and VIII in 1970–71 and 1982–84. International Council for the Exploration of the Sea (ICES) C.M./H:23.Google Scholar
Esch, G.W. & Fernândez, J.C. (1993) A functional biology of parasitism. London, Chapman & Hall.CrossRefGoogle Scholar
Feki, M., Chaari, M. & Neifar, L. (2016) Spatial variability of helminth parasites and evidence for stock discrimination in the round sardinella, Sardinella aurita (Valenciennes, 1847), off the coast of Tunisia. Journal of Helminthology 90, 353358.CrossRefGoogle ScholarPubMed
Gaamour, A., Ben Abdallah, L., Khemiri, S. & Mili, S. (2004) Etude de la biologie et de l'exploitation des petits pélagiques en Tunisie. Bulletin de l'Institut National des Sciences et Technologies de la Mer 5, 619.Google Scholar
Hattour, A. (2000) Contribution à l’étude des poissons pélagiques des eaux tunisienne . PhD Thesis, University of Science of Tunis in Tunisia.Google Scholar
Hattour, A., Ben Abdallah, L. & Guennegan, Y. (2004) Abondance relative et estimation de la biomasse des petits pélagiques des eaux tunisiennes. Bulletin de l'Institut National des Sciences et Technologies de la Mer 31, 11171121.Google Scholar
Highland Statistics. (2000) Brodgar Software package for multivariate analysis and multivariate time series analysis. Aberdeen, Highland Statistics Ltd.Google Scholar
Hilborn, R. & Walters, C.J. (1992) Quantitative fisheries stock assessment: Choice, dynamics, and uncertainty. New York, Chapman & Hall.Google Scholar
Kabata, Z., McFarlane, G.A. & Whitaker, D.J. (1988) Trematoda of Sablefish Anoplopoma fimbria (Pallas, 1911), as possible biological tags for stock identification. Canadian Journal of Zoology 66, 195221.Google Scholar
Køie, M. (1975) On the morphology and life history of Opechona bacillaris (Molin, 1859) Looss, 1907 (Trematoda: Lepocreadiidae). Ophelia 13, 6386.Google Scholar
Ktari-Chakroun, F. & Azouz, A. (1971) Les fonds chalutables de la région sud-est de la Tunisie (Golfe de Gabès). Bulletin de l'Institut National des Sciences et Technologies de la Mer 2, 548.Google Scholar
Lang, T., Damm, U., Weber, W., Neudecker, T. & Kuhlmorgen-Hille, E. (1990) Infestation of herring (Clupea harengus L.) with Anisakis sp. larvae in the western Baltic. Archiv für Fischereiwissenschaft 40, 101117.Google Scholar
Lester, R.J.G. (1990) Reappraisal of the use of parasites for fish stock identification. Australian Journal of Marine & Freshwater Research 41, 855864.Google Scholar
Love, M.S. (1980) Isolation of olive rockfish, Sebastes serranoides, populations off Southern California. Fishery Bulletin 77, 975983.Google Scholar
Luque, J.L., Mouillot, D. & Poulin, R. (2004) Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil. Journal of Parasitology 128, 671682.Google Scholar
MacKenzie, K. (1987) Parasites as indicators of host populations. International Journal of Parasitology 17, 345352.Google Scholar
MacKenzie, K. (2002) Parasites as biological tags in population studies of marine organisms: an update. Journal of Parasitology 124, 153163.CrossRefGoogle ScholarPubMed
MacKenzie, K. & Abaunza, P. (1998) Parasites as biological tags for stock discrimination of marine fish: a guide to procedures and methods. Fisheries Research 38, 4556.Google Scholar
MacKenzie, K. & Abaunza, P. (2005) Parasites as biological tags. pp. 211226 in Cadrin, S.X., Friedland, K.D. & Waldman, J.R. (Eds) Stock identification methods. Applications in fisheries science. San Diego, USA, Elsevier Academic Press.CrossRefGoogle Scholar
MacKenzie, K., Campbell, N., Mattiucci, S., Ramos, P., Pinto, A.L. & Abaunza, P. (2008) Parasites as biological tags for stock identification of Atlantic horse mackerel Trachurus trachurus L. Fisheries Research 89, 136145.CrossRefGoogle Scholar
Maigret, J. & Ly, B. (1986) Les poissons de mer de Mauritanie. Science Natural Compiègne.Google Scholar
Marcogliese, D.J. (2002) Food webs and the transmission of parasites to marine fish. Journal of Parasitology 124, 8399.CrossRefGoogle ScholarPubMed
Marcogliese, D.J. & Jacobson, K.C. (2015) Parasites as biological tags of marine, freshwater and anadromous fishes in North America from the tropics to the Arctic. Parasitology 142, 6889.Google Scholar
Moser, M. (199la) Biological tags for stock separation in Pacific herring (Clupea harengus pallasi Valenciennes) and the possible effects of ‘El Nino’ currents on parasitism. Proceedings of the International Herring Symposium, Anchorage, Alaska, October 1990, pp. 245–254. Fairbanks, Alaska, Alaska Sea Grant Program Report No. 91-01, University of Alaska.Google Scholar
Moser, M. (1991b) Parasites as biological tags. Parasitology Today 7, 182185.Google Scholar
Munroe, T.A., Campbell, R.A. & Zwerner, D.E. (1981) Diclidophora Nezumiae sp. n. (Monogenea: Diclidophoridae) and its ecological relationships with the Macrourid fish Nezumia bairdi (Goode and Bean, 1877). The Biological Bulletin 161, 281290.Google Scholar
Oliva, M.E. (1999) Metazoan parasites of the jack mackerel Trachurus murphyi (Teleostei, Carangidae) in a latitudinal gradient from South America (Chile and Peru). Parasite 6, 223230.Google Scholar
Oliva, M.E. (2001) Metazoan parasites of Macruronus magellanicus from southern Chile as biological tags. Journal of Fish Biology 58, 16171622.CrossRefGoogle Scholar
Oliva, M.E. & Ballôn, I. (2002) Metazoan parasites of the Chilean hake Merluccius gayi as a tool for stock discrimination. Fisheries Research 56, 313320.Google Scholar
Oliva, M., González, M. & Acuria, E. (2004) Metazoan parasites of Sebastes capensis from two localities in northern Chile as tools for stock identification. Journal of Fish Biology 64, 170175.CrossRefGoogle Scholar
Oliva, M., Valdivia, I.M., Costa, G., Freitas, N., Pinheiro De Carvalho, M.A., Sánchez, L. & Luque, J.L. (2008) What can metazoan parasites reveal about the taxonomy of Scomber japonicas Houttuyn in the coast of South America and Madeira Islands? Journal of Fish Biolology 72, 545554.CrossRefGoogle Scholar
Pauly, D. (1997) Méthodes pour l’évaluation des ressources halieutiques. p. 288 in Moreau, J. (Ed.) Adaptation Française. Toulouse, Cepadues.Google Scholar
Pérez-del Olmo, A., Raga, J.A., Kostadinova, A. & Fernández, M. (2007) Communities in Boops boops (L.) (Sparidae) after the Prestige oil-spill: detectable alterations. Marine Pollution Bulletin 54, 266276.Google Scholar
Power, A.M., Balbuena, J.A. & Raga, J.A. (2005) Parasite infracommunities as predictors of harvest location of bogue (Boops boops L.): a pilot study using statistical classifiers. Fisheries Research 72, 229239.Google Scholar
Rohde, K. (1980) Comparative studies on microhabitat utilization by ectoparasites of some marine fishes from the North Sea and Papua New Guinea. Zoologischer Anzeiger 204, 2763.Google Scholar
Roldán, M.I., Perrotta, R.G., Cortey, M. & Pla, C. (2000) Molecular and morphologic approaches to discrimination of variability patterns in chub mackerel, Scomber japonicus . Journal of Experimental Marine Biology and Ecology 5, 6374.Google Scholar
Scott, J.S. (1985) Occurrence of alimentary track helminth parasites of pollack (Pollachius virens L.) on the Scotian Shelf. Canadian Journal of Zoology 63, 16951698.Google Scholar
Scott, J.S. (1988) Helminth parasites of redfish (Sebastes fasciatus) from the Scotian Shelf, Bay of Fundy, and eastern Gulf of Maine. Canadian Journal of Zoology 66, 617621.Google Scholar
Stanley, R.D., Lee, D.L. & Whitaker, D.J. (1992) Parasites of yellowtail rockfish, Sebastes flavidus (Ayres, 1862) (Pisces: Teleostei), from the Pacific coast of North America as potential biological tags for stock identification. Canadian Journal of Zoology 70, 10861096.Google Scholar
Timi, J.T. (2003) Parasites of Argentine anchovy in the Southwest Atlantic: latitudinal patterns and their use for discrimination of host populations. Journal of Fish Biology 63, 90107.CrossRefGoogle Scholar
Timi, J.T. & Mackenzie, K. (2015) Parasites in fisheries and mariculture. Parasitology 142, 14.Google Scholar
Tzeng, W.N. (1988) Availability and population structure of spotted mackerel, Scomber australasicus, in the adjacent waters of Taiwan. Acta Oceanographica Taiwanica 19, 132145.Google Scholar
Tzong-Der, T. & Shean-Yahyeh, J. (2007) Morphological variation in the common mackerel (Scomber japonicus) off Taiwan. Journal of the Fisheries Society of Taiwan 34, 197205.Google Scholar
Williams, H. & Jones, A. (1994) Parasitic worms of fish. London, Taylor and Francis.Google Scholar
Williams, H.H., MacKenzie, K. & McCarthy, A.M. (1992) Parasites as biological indicators of the population biology, migrations, diet, and phylogenetics of fish. Reviews in Fish Biology and Fisheries 2, 144176.Google Scholar
Zar, J.H. (1996) Biostatistical analysis. 3rd edn. Upper Saddle River, New Jersey, Prentice-Hall.Google Scholar