Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T11:53:43.545Z Has data issue: false hasContentIssue false

Heat shock protein synthesis over time in infective Trichinella spiralis larvae raised in suboptimal culture conditions

Published online by Cambridge University Press:  12 April 2024

J. Martinez*
Affiliation:
Facultad de Farmacia, Departamento de Microbiologia y Parasitologia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
J. Perez-Serrano
Affiliation:
Facultad de Farmacia, Departamento de Microbiologia y Parasitologia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
W.E. Bernadina
Affiliation:
Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, PO Box 80165, 3508 TD, Utrecht, The Netherlands
I. Rincon
Affiliation:
Facultad de Farmacia, Departamento de Microbiologia y Parasitologia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
F. Rodriguez-Caabeiro
Affiliation:
Facultad de Farmacia, Departamento de Microbiologia y Parasitologia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
*
*Fax: 34 918854663, Email: francisco.martinez@uah.es

Abstract

Changes in the viability, infectivity and heat shock protein (Hsp) levels are reported in Trichinella spiralis first stage larvae (L1) stored in 199 medium for up to seven days at 37°C. These conditions induce stress that the larvae, eventually, cannot overcome. After three days of storage, the infectivity and viability were unchanged, although higher Hsp70 levels were observed. After this time, larvae gradually lost viability and infectivity, coinciding with a decrease in Hsp70 and Hsp90 and an increase in actin (a housekeeping protein). In addition, a possibly inducible heat shock protein, Hsp90i, appeared as constitutive Hsp90 disappeared. No significant changes in Hsp60 levels were detected at any time. These results suggest that heat shock proteins initially try to maintain homeostasis, but on failing, may be involved in cell death.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhuna, A., Saltora, P. & Bhatnagar, R. (2000) Nitric oxide induced expression of stress proteins in virulent and avirulent promastigotes of Leishmania donovanix. Immunology Letters 71, 171176.CrossRefGoogle Scholar
Beissinger, R.P. & Buchner, J. (1998) How chaperones fold proteins. Biological Chemistry 379, 245259.Google ScholarPubMed
Bell, R.G. (1998) The generation and expression of immunity to Trichinella spiralis in laboratory rodents. Advances in Parasitology 41, 149217.CrossRefGoogle ScholarPubMed
del Cacho, E., Gallego, M., Pereboom, D., Lopez-Bernad, F., Quilez, J. & Sanchez-Acedo, C. (2001) Eimeria tenella: hsp70 expression during sporogony. Journal of Parasitology 87, 946950.CrossRefGoogle ScholarPubMed
Descoteaux, A., Avila, H.A., Zhang, K., Turco, S.J. & Beverley, S.M. (2002) Leishmania LPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability. EMBO Journal 21, 44584469.CrossRefGoogle Scholar
Dobbin, C.A., Smith, N.C. & Johnson, A.M. (2002) Heat shock protein 70 is a potential virulence factor in murine toxoplasma infection via immunomodulation of host NF-kappa B and nitric oxide. Journal of Immunology 169, 958965.CrossRefGoogle ScholarPubMed
Hartman, D. & Gething, M.J. (1996) Normal protein folding machinery. pp. 324 in Feige, U., Morimoto, R.I., Yahara, I. & Polla, B.S. (Eds) Stress-inducible cellular response. Berlin, Birkhäuser Verlag.CrossRefGoogle Scholar
Hemphill, A. & Gotstein, B. (1995) Immunology and morphology studies on the proliferation of in vitro cultivated Echinococcus multilocularis metacestodes. Parasitology Research 81, 605614.CrossRefGoogle ScholarPubMed
Jenkins, D.C. & Carrington, T.S. (1981) An in vitro screening test for compounds active against the parental stages of Trichinella spiralis . Tropenmedizin und Parasitologie 32, 3134.Google Scholar
Ko, R.C. & Fan, L. (1996) Heat shock response of Trichinella spiralis and T. pseudospiralis . Parasitology 112, 8995.CrossRefGoogle ScholarPubMed
La Rosa, G., Pozio, E., Rossi, P. & Murrell, K.D. (1992) Allozyme analysis of Trichinella isolates from various host species and geographical regions. Journal of Parasitology 78, 641646.CrossRefGoogle ScholarPubMed
Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Martinez, J., Perez-Serrano, J., Bernadina, W.E. & Rodriguez-Caabeiro, F. (1999) In vitro stress response to elevated temperature, hydrogen peroxide and mebendazole in Trichinella spiralis muscle larvae. International Journal for Parasitology 29, 14571464.CrossRefGoogle ScholarPubMed
Martinez, J., Perez-Serrano, J., Bernadina, W.E. & Rodriguez-Caabeiro, F. (2002) Expression of Hsp90, Hsp70 and Hsp60 in Trichinella species exposed to oxidative shock. Journal of Helminthology 76, 217223.CrossRefGoogle ScholarPubMed
Miller, C.M., Smith, N.C. & Johnson, A.M. (1999) Cytokines, nitric oxide, heat shock proteins and virulence in Toxoplasma . Parasitology Today 15, 418422.CrossRefGoogle ScholarPubMed
Miyata, Y. (2003) Molecular chaperone HSP90 as a novel target for cancer chemotherapy. Nippon Yakurigaku Zasshi 121, 3342.CrossRefGoogle ScholarPubMed
Niak, C.H., Su, K.W. & Ko, R.C. (2001) Identification of some heat-induced genes of Trichinella spiralis . Parasitology 123, 293300.Google Scholar
Pratt, W.B., Gehring, U. & Toft, D.O. (1996) Molecular chaperoning of steroid hormone receptors. pp. 7996 in Feige, U., Morimoto, R.I., Yahara, I. & Polla, B.S. (Eds) Stress-inducible cellular response. Berlin, Birkhäuser Verlag.CrossRefGoogle Scholar
Raines, K.M. & Stewart, G.L. (1988) Carbohydrate reserves and infectivity in Trichinella spiralis isolated from carrion. Parasitology 96, 533541.CrossRefGoogle ScholarPubMed
Samali, A. & Orrenius, S. (1998) Heat shock proteins: regulators of stress response and apoptosis. Cell Stress and Chaperones 3, 228236.2.3.CO;2>CrossRefGoogle ScholarPubMed
Sapozhnikov, A.M., Gusarova, G.A., Ponomarev, E.D. & Telford, W.G. (2002) Translocation of cytoplasmic HSP70 onto the surface of EL-4 cells during apoptosis. Cell Proliferation 35, 193206.CrossRefGoogle ScholarPubMed
Smejkal, R.M., Wolff, R. & Olenick, J.G. (1988) Leishmania braziliensis panamensis: increased infectivity resulting from heat shock. Experimental Parasitology 65, 19.CrossRefGoogle ScholarPubMed
Smyth, J.D. (1990) Nematodes: other than Filarioidea. pp. 187229 in Smyth, J.D. (Ed.) In vitro cultivation of parasitic helminths. Boston, CRC Press.Google Scholar
Stamatis-Nick, C.L., Charles, C.V. & George, C.T. (1998) The alter ego of heat shock proteins. Clinical Immunology and Immunopathology 3, 235236.Google Scholar
Terlecky, S.R. (1994) Hsp70s and lysosomal proteolysis. Experientia 50, 10211025.CrossRefGoogle ScholarPubMed
Tosi, P., Visani, G., Ottaviani, E., Gibellini, D., Pellacani, A. & Tura, S. (1997) Reduction of heat-shock protein-70 after prolonged treatment with retinoids: biological and clinical implications. American Journal of Hematology 56, 143150.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Vanden Berghe, T., Kalai, M., Van Loo, G., Declercq, W. & Vandenabeele, P. (2003) Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. Journal of Biological Chemistry 278, 56225629.CrossRefGoogle ScholarPubMed
Vayssier, M. & Polla, B.S. (1998) Heat shock proteins chaperoning life and death. Cell Stress and Chaperones 3, 221227.2.3.CO;2>CrossRefGoogle ScholarPubMed
Vayssier, M., Le Guerhier, F., Fabien, J.F., Philippe, H., Vallet, C., Ortega-Pierres, G., Soule, C., Perret, C., Liu, M., Vega-Lopez, M. & Boireau, P. (1999) Cloning and analysis of a Trichinella britovi gene encoding a cytoplasmic heat shock protein of 72 kDa. Parasitology 119, 8193.CrossRefGoogle ScholarPubMed
Wakelin, D. & Denham, D.A. (1983) The immune response. pp. 265308 in Campbell, W.C. (Ed.) Trichinella and trichinellosis. New York, Plenum Press.CrossRefGoogle Scholar
Wei, Y.Q., Zhao, X., Kariya, Y., Teshigawara, K. & Uchida, A. (1995) Inhibition of proliferation and induction of apoptosis by abrogation of heat shock protein (Hsp)70 expression in tumor cells. Cancer Immunology and Immunotherapy 40, 7378.CrossRefGoogle ScholarPubMed
Wood, I.B., Amaral, N.K., Bairden, K., Duncan, J.L., Kassai, T., Malone, J.B., Pankavich, J.A., Reinecke, R.K., Slocombe, O., Taylor, S.M. & Vercruysse, J. (1995) World Association for the Advancement of Veterinary Parasitology (WAAVP) second edition of guidelines for evaluating the efficacy of anthelminthics in ruminants (bovine, ovine, caprine). Veterinary Parasitology 58, 181213.CrossRefGoogle ScholarPubMed