Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-07T05:16:11.420Z Has data issue: false hasContentIssue false

Glycogen catabolism enzymes and protein fractions in the third and fourth larval stages of Anisakis simplex

Published online by Cambridge University Press:  01 March 2008

E. Łopieńska-Biernat*
Affiliation:
Department of Biochemistry, Faculty of Biology, University Warmia and Mazury, Oczapowskiego 1A, Olsztyn 10-957, Poland
K. Żółtowska
Affiliation:
Department of Biochemistry, Faculty of Biology, University Warmia and Mazury, Oczapowskiego 1A, Olsztyn 10-957, Poland
J. Rokicki
Affiliation:
Department of Invertebrate Zoology, University of Gdansk, Pilsudskiego 46, Gdynia 81-378, Poland

Abstract

Extracts of Anisakis simplex third (L3) and fourth (L4) larval stages were assayed for protein content and activity and properties of α-amylase, glucoamylase and glycogen phosphorylase. Protein content in L4 was twice that in L3. SDS–PAGE applied to both larval stages revealed 22 protein fractions in each, including five stage-specific fractions in each larval stage. The L3 extracts contained three amylase isoenzymes: α1, α2 and α3; their molecular weights were 64, 29 and 21 kDa, respectively. Only one amylase isoenzyme (64 kDa) was found in the L4 extracts. Glycogen in L3 was found to be broken down mostly by hydrolysis because of low glycogen phosphorylase activity. The α-amylase activity in L4 was higher than that in L3 by half and the glycogen phosphorylase activity was ten times higher. In addition, the same enzymes isolated from L3 and L4 were found to differ in their properties. These differences could be manifestations of metabolic adaptations of A. simplex larvae to host switch from fish (L3) to mammals (L4), i.e. adaptations to a new habitat.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beg, M.A., Fistein, J.L., Ingram, G.A. & Storey, D.M. (1996) Activities of glycogen phosphorylase, alanine aminotransferase and aspartate aminotransferase in adult worms of Litomosoides carinii recovered from pyridoxine deficient cotton rats (Sigmodon hispidus). Parasitology 112, 227232.CrossRefGoogle ScholarPubMed
Bhuiyan, S.H., Rus'd, A.A., Kitaoka, M. & Hayashi, K. (2003) Characterization of a hyperthermostable glycogen phosphorylase from Aquifex aeolicus expressed in Escherichia coli. Journal of Molecular Catalysis B 22, 173180.CrossRefGoogle Scholar
Bradford, J. (1976) A rapid sensitive method for quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Caraway, W.T. (1959) A stable starch substrate for determination of amylase in serum and other body fluids. American Journal of Clinical Pathology 32, 9799.CrossRefGoogle ScholarPubMed
Chen, P.s. Jr, Toribara, T.y. & Warner, H. (1974) Microanalytical methods. pp. 83–84 in Keleti, G. & Lederer, W.H. (Eds) Handbook of micromethods for the biological sciences. New York, Van Nostrad Reinhold.Google Scholar
Cori, G.T., Illingworth, B. & Keller, P.J. (1955) Muscle phosphorylase. pp. 200205in Colowick, S.P. & Kaplan, N.O. (Eds) Methods in enzymology. New York, Academic Press.CrossRefGoogle Scholar
Dahlqvist, A. (1968) Assay of intestinal disaccharidases. Analytical Biochemistry 22, 99107.CrossRefGoogle ScholarPubMed
Davis, B.J. (1964) Disc electrophoresis. II. Method and application. Annals of the New York Academy of Sciences 121, 99107.CrossRefGoogle ScholarPubMed
Donahue, M.J., Yacoub, N.J., Kaeini, M.R., Masaracchia, R.A. & Harris, B.G. (1981) Glycogen metabolizing enzymes during starvation and feeding of Ascaris suum maintained in a perfusion chamber. Journal of Parasitology 67, 505510.CrossRefGoogle Scholar
Dziekońska-Rynko, J., Rokicki, J. & Jabłonowski, Z. (1997a) The influence of infection with III larval stage of Anisakis simplex on the activity of proteases in alimentary tract of guinea pigs. Wiadomości Parazytologiczne 43, 425430.Google Scholar
Dziekońska-Rynko, J., Rokicki, J. & Jabłonowski, Z. (1997b) The impact of animal and plant proteases on nematode 3rd stage Anisakis simplex larvae. Oceanology Studies 1, 103107.Google Scholar
Dziekońska-Rynko, J., Rokicki, J. & Jabłonowski, Z. (2002) Influence of Anisakis simplex stage III larvae upon the activity of proteases under in vitro conditions. Wiadomości Parazytologiczne 48, 217223.Google ScholarPubMed
Frank, G.R. & Grieve, R.B. (1991) Metabolic labeling of Dirofilaria immitis third- and fourth-stage larvae and their excretory-secretory products. Journal of Parasitology 77, 950956.CrossRefGoogle ScholarPubMed
Grabda, J. (1976) Studies on the life cycle and morphogenesis of Anisakis simplex (Rudolphi, 1809) (Nematoda: Anisakidae) cultured in vitro. Acta Ichtyologica Piscatoria 6, 119140.CrossRefGoogle Scholar
Łopieńska, E., Żółtowska, K. & Rokicki, J. (2001) Porównanie własności α-amylazy z larw trzeciego i czwartego stadium Anisakis simplex. Wiadomości Parazytologiczne 47, 323328.Google ScholarPubMed
Łopieńska-Biernat, E., Żółtowska, K. & Rokicki, J. (2006) The content of carbohydrates in larval stages of Anisakis simplex (Nematoda, Anisakidae). Helminthologia 43, 125129.CrossRefGoogle Scholar
Michal, G. (1981) d-Glucose 1-phosphate. pp. 191199in Bergmeyer, H.U. (Ed.) Methods of enzymatic analysis. Vol. VI. Metabolites 1: carbohydrates. Weinheim, Deerfield Beach, Florida, Basel, Verlag Chemie.Google Scholar
Mohamed, M.A. (2004) Purification and characterization of α-amylase from the infective juveniles of the nematode Heterorhabditis bacteriophora. Comparative Biochemistry and Physiology 139B, 19.Google Scholar
Molina-Garcia, A.D. & Sanz, P.D. (2002) Anisakis simplex larvae killed by high-hydrostatic-pressure processing. Journal Food Protection 65, 383388.CrossRefGoogle ScholarPubMed
Morris, S.R. & Sakanari, J.A. (1994) Characterization of the serine protease and serine protease inhibitor from the tissue-penetrating nematode Anisakis simplex. Journal of Biological Chemistry 269, 2765027656.CrossRefGoogle ScholarPubMed
Nakatani, Y., Suzuki, K. & Shimanda, H. (1998) Anisakidosis: a case of intestinal obstruction from eating sushi. American Journal of Gastroenterology 93, 11721180.Google Scholar
Nguyen, T.T., Qasim, M.A., Morris, S., Cheng-Chan, L., Hill, D., Laskowski, J.R.M. & Sakanari, J.A. (1999) Expression and characterization of elastase inhibitors from the ascarid nematodes Anaskis simplex and Ascaris suum. Molecular and Biochemical Parasitology 102, 7989.Google ScholarPubMed
Oshima, T. (1987) Anisakiasis–is the sushi bar guilty? Parasitology Today 3, 4450.CrossRefGoogle ScholarPubMed
Perteguer, M.J., Raposo, R. & Cuellar, C. (1996) In vitro study on the effect of larval excretory/secretory products and crude extract from Anisakis simplex on blood. International Journal for Parasitology 26, 105108.CrossRefGoogle Scholar
Sakanari, J.A. & McKerrow, J.H. (1990) Identification of secreted neutral proteases from Anisakis simplex. Journal of Parasitology 76, 625630.CrossRefGoogle ScholarPubMed
Smith, J.W. & Wootten, R. (1978) Anisakis and anisakiasis. Advances in Parasitology 16, 93163.CrossRefGoogle ScholarPubMed
Takabe, K., Ohki, S., Kunihiro, O., Sakashita, T., Endo, I., Ichikawa, Y., Sekido, H., Amano, T., Nakatani, Y., Suzuki, K. & Shimanda, H. (1998) Anisakidosis: a case of intestinal obstruction from eating sushi. American Journal of Gastroenterology 93, 11721180.CrossRefGoogle ScholarPubMed
Valls, A., Pascual, M. & Esteban, M.M. (2005) Anisakis allergy: an update. Revue Française d'Allergologie et d'Immunologie Clinique 45, 108113.CrossRefGoogle Scholar
Van den Bossche, H. & Borgers, M. (1973) Subcellular distribution of digestive enzymes in Ascaris suum intestine. International Journal for Parasitology 3, 5965.CrossRefGoogle ScholarPubMed
Van Wormhoudt, A. & Farvel, P. (1988) Electrophoretic characterization of Palaemon elegans (Crustacea, Decapoda) amylase system: study of amylase polymorphism during the intermolt cycle. Comparative Biochemistry and Physiology 89B, 201207.Google Scholar
Viglierchio, D.R. & Görtz, J.H. (1972) The derivatives of the zooparasitic nematode Anisakis physteris and the sperm whale host. Experimental Parasitology 32, 211216.CrossRefGoogle ScholarPubMed
Weber, K. & Osborn, M. (1969) The reliability of molecular weight determinations by dodecyl sulphate–polyacrylamide gel electrophoresis. Journal of Biological Chemistry 244, 44064412.CrossRefGoogle Scholar
Yacoub, N.J., Allen, B.L., Payne, D.M., Masaracchia, R. & Harris, B.G. (1983) Purification and characterization of phosphorylase B from Ascaris suum. Molecular and Biochemical Parasitology 9, 297307.CrossRefGoogle ScholarPubMed
Ženka, J. & Prokopič, J. (1984) Isolation and properties of alpha-amylase from perienteric fluid of Ascaris suum. Folia Parasitologica 31, 183186.Google ScholarPubMed
Żółtowska, K. (2001a) Purification and characterization of α-amylase from the intestine and muscle of Ascaris suum (Nematoda). Acta Biochemica Polonica 48, 763774.CrossRefGoogle ScholarPubMed
Żółtowska, K. (2001b) The isoenzymes of α-amylase from intestine of Ascaris suum. Helminthologia 38, 205209.Google Scholar
Żółtowska, K., Łopieńska, E., Rokicki, J. & Dmitryjuk, M. (2001) Enzymy katabolizmu węglowodanów z Cysitidicola farionis (Cystidicolidae). Wiadomości Parazytologiczne 47, 311315.Google Scholar
Żółtowska, K., Łopieńska, E., Rokicki, J. & Dmitryjuk, M. (2002) The enzymes of glycogen and trehalose catabolism form Hysterothylacium aduncum (Nematoda: Anisakidae). Folia Parasitologica 49, 239242.CrossRefGoogle Scholar