Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T13:58:03.295Z Has data issue: false hasContentIssue false

Genetic and morphological variation in Echinorhynchus gadi Zoega in Müller, 1776 (Acanthocephala: Echinorhynchidae) from Atlantic cod Gadus morhua L.

Published online by Cambridge University Press:  25 January 2011

E. Sobecka*
Affiliation:
Department of Fish Diseases, West Pomeranian University of Technology in Szczecin, Poland
B. Szostakowska
Affiliation:
Department of Tropical Parasitology, Medical University of Gdansk, Inter-Faculty Institute of Maritime and Tropical Medicine, Poland
K. MacKenzie
Affiliation:
School of Biological Sciences (Zoology), The University of Aberdeen, Aberdeen, UK
W. Hemmingsen
Affiliation:
Institute of Biology, Department of Ecology and Department of Zoology, University of Tromsø, Norway
S. Prajsnar
Affiliation:
The Deep, Hull Sealife Centre, Tower Street, Hull, UK
M. Eydal
Affiliation:
Institute for Experimental Pathology, University of Iceland, Reykjavík, Iceland

Abstract

Previous studies have shown considerable variability in morphological features and the existence of genetically distinct sibling species in the acanthocephalan Echinorhynchus gadi Zoega in Müller, 1776. The aim of the present study was to follow up and extend those earlier studies by using a combination of DNA analysis and morphometrics to investigate differences between samples of E. gadi from Atlantic cod Gadus morhua L. caught at five fishing grounds in the Baltic Sea and three in different parts of the North Atlantic. Twelve morphological features were measured in 431 specimens of E. gadi, 99 individuals were studied by polymerase chain reaction-restriction fragment length polymorphosm (PCR-RFLP), and selected PCR products were sequenced. The molecular analyses showed the nucleotide sequences of E. gadi rDNA from cod caught at all the sampling sites to be identical. The comparative morphological study, in contrast, revealed significant differences between samples of E. gadi from different sampling sites and showed the separation of E. gadi into two groups corresponding approximately to the systematic classification of cod into the two subspecies, Atlantic G. morhua morhua and Baltic G. morhua callarias. The E. gadi infrapopulation size had a significant effect on some of the morphological features. The results are discussed in relation to cod population biology, the hydrography of the study area and the history of the Baltic Sea formation.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, O.N. (Ed.) (1987) Key to the parasites of freshwater fishes of SSSR, Volume 3, metazoan parasites. 583 pp. Leningrad, Soviet Academy of Sciences (in Russian).Google Scholar
Buchmann, K. (1986) On the infection of Baltic cod (Gadus morhua L.) by the acanthocephalan Echinorhynchus gadi (Zoega) Müller. Nordisk Veterinær-Medicin 38, 308314.Google ScholarPubMed
Buchmann, K. (1995) Ecological implications of Echinorhynchus gadi parasitism of Baltic cod (Gadus morhua). Journal of Fish Biology 46, 539540.Google Scholar
Campbell, A.J.D., Gasser, R.B. & Chilton, N.B. (1995) Differences in a ribosomal DNA sequence of Strongylus species allows identification of single eggs. International Journal for Parasitology 25, 359365.Google Scholar
Dobosz, M. (2004) Computer-aided statistical analysis of experimental data. 2nd edn.456 pp. Warszawa Akademicka Oficyna Wydawnicza Exit (in Polish).Google Scholar
Gasser, R.B., Chilton, N.B., Hoste, H. & Stevenson, L.A. (1994) Species identification of Trichostrongyle nematodes by PCR-linked RFLP. International Journal for Parasitology 24, 291293.Google Scholar
Ghichenok, L.A. (1995) Variability and phenotypic diversity of Echinorhynchus gadi (Acanthocephala) in two species of fishes from the White Sea. Zoologicheskii Zhurnal 74, 1526.Google Scholar
Łomniewski, K., Mańkowski, W. & Zaleski, J. (1975) Baltic Sea. 507 pp. Warszawa, PWN.Google Scholar
Magaard, I. & Rheinheimer, G. (1974) Meereskunde der Ostsee (Oceanography of the Baltic Sea). 269 pp. Heidelberg, Springer Verlag.CrossRefGoogle Scholar
Möller, H. (1975) Die Parasiten des Dorsches (Gadus morhua L.) in Kieler Förde. Bericht der Deutschen Wissenschaftlichen Kommision fur Meeresforschung 24, 7178.Google Scholar
Müller, H. (2002) The distribution of ‘Belt Sea cod’ and ‘Baltic cod’ in the Baltic Sea from 1995 to 2001 estimated by discriminant analysis of the number of dorsal fin rays. International Council for the Exploration of the Sea Council Meeting Paper L 16. 23 pp. Copenhagen, Denmark.Google Scholar
Nielsen, E.E., Hansen, M.M., Ruzzante, D.E., Meldrup, D. & Grønkjær, P. (2003) Evidence of a hybrid-zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis. Molecular Ecology 12, 14971508.CrossRefGoogle ScholarPubMed
Nordenberg, C.-B. (1963) Ichthyo-parasitological studies on Baltic cod. Kungliga Fysiografiska Sällskapet i Lund Förhandlingar 33, 4961.Google Scholar
Otterling, G. (1985) Cod migration and transplantation experiments in the Baltic. Journal of Applied Ichthyology 1, 316.CrossRefGoogle Scholar
Petrocčenko, V.I. (1956) Acanthocephala of domestic and wild animals. Volume 1. 465 pp. Moscow, Izdatel'tsvoAkademii Nauk SSSR (English translation 1971 by Israel Program for Scientific Translations, Jerusalem).Google Scholar
Pilecka -Rapacz, M. & Sobecka, E. (2004) Parasitic fauna of young Baltic cod, Gadus morhua callarias L. in the Gulf of Puck, Poland. Acta Ichthyologica et Piscatoria 34, 235240.CrossRefGoogle Scholar
Reiczigel, J. (2003) Confidence intervals for the binomial parameter: some new considerations. Statistics in Medicine 22, 611621.Google Scholar
Rozsa, L., Reiczigel, J. & Majoros, G. (2000) Quantifying parasites in samples of hosts. Journal of Parasitology 86, 228232.CrossRefGoogle ScholarPubMed
Shostak, A.W., Dick, T.A. & Szalai, A.J. (1986) Morphological variability in Echinorhynchus gadi, E. leidyi, and E. salmonis from fishes in northern Canadian waters. Canadian Journal of Zoology 64, 985995.CrossRefGoogle Scholar
Sick, K. (1965) Haemoglobin polymorphism of cod in the Baltic and the Danish Belt Sea. Heredita 54, 1948.CrossRefGoogle ScholarPubMed
Studnicka, M. (1965) Internal parasites of the cod, Gadus morhua L., from Gdańsk Bay of the Baltic Sea. Acta Parasitologica Polonica 3, 283290.Google Scholar
Thulin, J., Höglund, J. & Lindesjöö, E. (1989) Fish diseases in coastal waters of Sweden. 126 pp. Naturvårdsverket. Stockholm, Almänna Förlaget (in Swedish).Google Scholar
Väinölä, R., Valtonen, E.T. & Gibson, D.I. (1994) Molecular systematics in the acanthocephalan genus Echinorhynchus (sensu lato) in northern Europe. Parasitology 108, 105114.Google Scholar
Wayland, M.T. (2010) Proboscis profiler: a tool for detecting acanthocephalan morphotypes. Systematic Parasitology 76, 159167.Google Scholar
Wayland, M.T., Gibson, D.I. & Sommerville, C. (2005) Morphometric discrimination of two allozymically diagnosed sibling species of the Echinorhynchus gadi Zoega in Müller complex (Acanthocephala) in the North Sea. Systematic Parasitology 60, 139149.CrossRefGoogle ScholarPubMed