Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T12:10:39.827Z Has data issue: false hasContentIssue false

Functional role of cholinergic drugs on spontaneous muscular activity in the amphistome Gastrothylax crumenifer from ruminants

Published online by Cambridge University Press:  01 March 2009

P.K. Verma*
Affiliation:
Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly243 122 (UP), India
D. Kumar
Affiliation:
Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly243 122 (UP), India
S.K. Tandan
Affiliation:
Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly243 122 (UP), India

Abstract

Acetylcholine is the major endogenous classical neurotransmitter in the central and peripheral nervous system of trematodes and mammals. This study investigates the effects of cholinergic drugs on muscle activity in the amphistome, Gastrothylax crumenifer. In the present investigation, acetylcholine (10− 7–10− 3 m) did not produce any marked effect, whereas carbachol (10− 7–10− 3 m) elicited a concentration-dependent decrease in amplitude, baseline tension and frequency of contractions as compared to the control. Nicotine (10− 7–10− 3 m) produced a significant decrease in the amplitude and frequency of spontaneous muscular activity in a concentration-dependent manner, as compared to control amplitude (0.5 ± 0.01 g) and frequency (58.5 ± 3.45 per 5 min). However, the baseline tension was also reduced significantly by 10− 3 m nicotine. Atropine (10− 7–10− 3 m) elicited a concentration-dependent increase in amplitude and baseline tension, whereas there was no significant effect on the frequency of the spontaneous contractions of rumen flukes. These observations indicate that G. crumenifer has an inhibitory cholinergic system and that the inhibitory activity of nicotine is more pronounced than that of carbachol or acetylcholine.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, M. & Nizami, W.A. (1990) In vitro effect of some anthelmintics on the motility of Gigantocotyle explanatum. Japanese Journal of Parasitology 39, 529534.Google Scholar
Blair, K.L. & Anderson, P.A.V. (1994) Physiological and pharmacological properties of muscle cells isolated from the flatworm, Bdelloura candida (Tricladia). Parasitology 109, 325335.CrossRefGoogle Scholar
Courtney, C.H. & Roberson, E.L. (1995) Chemotherapy of the parasitic diseases: antinematodal drugs. pp. 885932in Adam, H.R. (Ed.) Veterinary pharmacology and therapeutics. Ames, Iowa State University Press.Google Scholar
Cully, D.L., Vassilitis, D.K., Liu, K.K., Raress, P.S., Vanderploeg, L.H.T. & Schaeffer, J.M. (1994) Cloning of an avermectin sensitive glutamate gated chloride channel from Caenorhabditis elegans. Nature 371, 707711.CrossRefGoogle ScholarPubMed
Dale, H.H. (1914) The action of certain esters and ethers of choline, and their relation to muscarine. Journal of Pharmacology and Experimental Therapeutics 6, 147190.Google Scholar
Day, T.A., Chen, G.T., Miller, C., Wing, T., Bennet, J.L. & Pax, R.A. (1996) Cholinergic inhibition of muscle fibres isolated from Schistosoma mansoni. Parasitology 108, 425432.CrossRefGoogle Scholar
Evans, A.M. & Martin, R.J. (1996) Activation and cooperative multi-ion block of single nicotinic acetylcholine channel currents of Ascaris muscle by the tetrahydropyrimidine anthelmintic, morantel. British Journal of Pharmacology 118, 11271140.CrossRefGoogle ScholarPubMed
Geary, T.G., Klein, R.D., Vanover, L., Bowman, J.W. & Tompson, D.P. (1992) The nervous system of helminths as target for drugs. Journal of Parasitology 78, 215230.CrossRefGoogle ScholarPubMed
Harrow, I.D. & Gration, K.A.F. (1985) Mode of action of anthelmintics morantel, pyrantel and levamisole in the muscle cell membrane of the nematode Ascaris suum. Pesticide Science 16, 662672.CrossRefGoogle Scholar
Holmes, S.D. & Fairweather, I. (1984) Fasciola hepatica: the effects of neuropharmacological agents upon in vitro activity. Experimental Parasitology 58, 144208.CrossRefGoogle Scholar
Hrckova, G., Velenbny, S., Halton, D.W. & Maule, A.G. (2002) Mesocestoides corti (syn. M. vogae): modulation of larval motility by neuropeptides, serotonin and acetylcholine. Parasitology 124, 409421.CrossRefGoogle Scholar
Kralj, N. (1967) Morphological and histochemical studies on the nervous system of tapeworms revealed by the cholinesterase method (Taenia hydatigena, Dipylidium caninum and Moniezia expansa). Veteriniski Archiv 37, 277284.Google Scholar
Kumar, D. & Tripathi, H.C. (1996) Effect of nicotine and nicotinic antagonists on in vitro motility of Fasciola gigantica. Prospects of Livestock and Poultry Development in 21st Century, 23–24 February. p. 29. Izatnagar, India, Central Avian Research Institute.Google Scholar
Martin, R.J. (1985) Gamma-aminobutyric acid and piperazine activated single channel currents from Ascaris suum body muscle. British Journal of Pharmacology 84, 445461.CrossRefGoogle ScholarPubMed
Martin, R.J. (1997) Mode of action of anthelmintic drugs. Veterinary Journal 154, 1134.CrossRefGoogle ScholarPubMed
Maule, A.G., Halton, D.W., Johnston, C.F., Fairweather, I. & Shaw, C. (1989) Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke (F. hepatica) (Trematoda Diagenia). Parasitology 98, 227234.Google Scholar
Maule, A.G., Halton, D.W., Johnston, C.F., Show, C. & Fairweather, I. (1990) Serotonergic, cholinergic and peptidergic components of the nervous system in the monogenean parasite, Diclidophora merlangi: a cytochemical study. Parasitology 100, 255273.CrossRefGoogle Scholar
Mehlhorn, H., Becher, B., Andrews, R., Thomas, H. & Frenkel, J.R. (1981) In vivo and in vitro experiments on the effect of praziquantel on Schistosoma mansoni: a light and electron microscope study. Arzneimittel Forschung 31, 544554.Google Scholar
Mellin, T.N., Busch, R.D., Wang, C.C. & Kath, G. (1983) Neuropharmacology of the parasitic trematode Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 32, 8393.CrossRefGoogle ScholarPubMed
Numa, S., Noda, M., Takahashi, H., Tanabe, T., Toyosoto, M., Furutani, Y. & Kikyotani, S. (1983) Molecular structure of the nicotinic acetylcholine receptor. Cold Spring Harbor Symposium in Quantitative Biology 48, 5769.CrossRefGoogle ScholarPubMed
Pax, R.A., Day, T.A., Miller, C.L. & Bennett, J.L. (1996) Neuromuscular physiology and pharmacology of parasitic flatworms. Parasitology 113, S83S96.CrossRefGoogle ScholarPubMed
Prichard, R.K. (2005) Is anthelmintic resistance a concern for heartworm control? What can we learn from the human filariasis control programs? Veterinary Parasitology 133, 243253.CrossRefGoogle ScholarPubMed
Probert, A.J. & Durrani, M.S. (1977) Fasciola hepatica and Fasciola gigantica: total cholinesterase, characteristics and effects of specific inhibitors. Experimental Parasitology 42, 203210.CrossRefGoogle ScholarPubMed
Reznik, G.K. & Tichrhenko, L.G. (1987) The effect of bunamidine hydrochloride and praziquantel on E. granulosus. Veterinariya 2, 3639[cited in Helminth Abstracts (56), 3520].Google Scholar
Shyu, L.Y., Jerada, M., Lee, H.H., Shyu, L.Y. & Lee, H.H. (1998) In vitro effect of various neuropharmacological agents on adult Clonorchis sinensis. Journal of Medical Sciences 148, 473479.Google Scholar
Snedecor, G.W. & Cochran, W.J. (1989) Statistical methods. 61 pp. Bombay, Oxford IBH Co.Google Scholar
Sukhdeo, S.C., Sangster, N.C. & Mettrick, D.F. (1986) Effects of cholinergic drugs on longitudinal muscle contraction of Fasciola hepatica. Journal of Parasitology 72, 492497.CrossRefGoogle ScholarPubMed
Tripathi, H.C., Kumar, D., Chandra, S. & Prasad, A. (2000) Final report of the project entitled ‘Neurobiological studies in mature and immature Fasciola gigantica’. Izatnagar, UP, IVRI.Google Scholar
Verma, P.K., Katoch, R., Srivastava, A.K. & Pankaj, N.K. (2007) An overview of neurotransmitters of helminthic parasites. Veterinary Practitioner 8, 176179.Google Scholar
Von Samson-Himmelstjerna, G. & Blackhall, W. (2005) Will technology provide solutions for drug resistance in veterinary helminths? Veterinary Parasitology 132, 223239.CrossRefGoogle ScholarPubMed
Ward, S.M., Allen, J.M. & McKerr, G. (1986) Neuromuscular physiology of Grillotia erinaceus metacestodes (Cestoda; Trypanorhyncha) in vitro. Parasitology 93, 121132.CrossRefGoogle Scholar