Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-25T11:48:16.616Z Has data issue: false hasContentIssue false

Effect of agitation speed on the density of bacteria Photorhabdus luminescens and the population dynamics of nematodes Heterorhabditis megidis in liquid culture

Published online by Cambridge University Press:  10 September 2021

D. Tumialis
Affiliation:
Department of Animal Environment Biology, Institute of Animal Sciences, Warsaw University of Life Sciences – SGGW, Ciszewskiego 8, 02-786Warsaw, Poland
A. Mazurkiewicz*
Affiliation:
Department of Animal Environment Biology, Institute of Animal Sciences, Warsaw University of Life Sciences – SGGW, Ciszewskiego 8, 02-786Warsaw, Poland
I. Skrzecz
Affiliation:
Department of Forest Protection, Forest Research Institute, Braci Leśnej 3 Street, Sękocin Stary, 05-090Raszyn, Poland
*
Author for correspondence: A. Mazurkiewicz, E-mail: anna_mazurkiewicz@sggw.edu.pl

Abstract

Liquid culture is the most scalable technology for the industrial production of entomopathogenic nematodes. Variability of the recovery after inoculation into cultures of Photorhabdus luminescens remains a persistent problem in the mass production of Heterorhabditis sp. In order to enhance infective juvenile (IJ) recovery and improve nematode population management, we analysed the correlation between the nematode Heterorhabditis megidis (strain KV – 136) development in liquid cultures, the density of bacteria of P. luminescens and the culture agitation speed. Analyses focused on the impact of different agitation speeds (160 rpm and 200 rpm) on the dynamics of population growth of H. megidis in liquid cultures at constant biotic and abiotic parameters (initial dose of nematodes introduced to the culture 2300 IJs/ml, temperature 25°C, the number of bacterial colonies 0.3 × 107/ml). The performed experiments showed that the agitation speed of 200 rpm favourably affected the density of bacteria of P. luminescens (24.14 × 107/ml). High density of bacteria at this agitation speed resulted in an earlier (on the fifth day of the culture) maximum increase in the number of hermaphroditic individuals (1239.6 H/ml) than in the culture at an agitation speed of 160 rpm.

Type
Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bedding, RA (1981) Low cost in vitro mass production of Neoplectana and Heterorhabditis species (Nematoda) for field control of insect pests. Nematologica 27, 109114.CrossRefGoogle Scholar
Chavarría-Hernández, N, Rodríguez-Hernández, AI, Pérez-Guevara, F and de la Torre, M (2003) Evolution of culture broth rheological properties during propagation of the entomopathogenic nematode Steinernema carpocapsae, in submerged monoxenic culture. Biotechnology Progress 19(2), 405409.CrossRefGoogle ScholarPubMed
Cortés-Martínez, CI and Chavarría-Hernández, N (2020) Production of entomopathogenic nematodes in submerged monoxenic culture: a review. Biotechnology and Bioengineering 117(12), 39683985.CrossRefGoogle ScholarPubMed
De la Torre, M (2003) Challenges for mass production of nematodes in submerged culture. Biotechnology Advances 21(5), 407416.CrossRefGoogle ScholarPubMed
Dunn, MD, Belur, PD and Malan, AP (2000) In vitro liquid culture and optimization of Steinernema jeffreyense using shake flasks. Biocontrol 65, 223233.CrossRefGoogle Scholar
Ehlers, RU (2000) Achievements in research of EPN mass production. Developments in entomopathogenic nematode/bacterial research. COST Action 819, 6877.Google Scholar
Ehlers, RU (2001) Mass production potential of entomopathogenic nematodes for plant protection. Applied Microbiology and Biotechnology 56, 623633.CrossRefGoogle Scholar
Ehlers, RU and Hokkanen, HMT (1996) Insect biocontrol with non-endemic entomopathogenic nematodes (Steinernema and Heterorhabditis spp.): conclusion and recommendations of a combined OECD and COST workshop on scientific and regulatory policy issues. Biocontrol Science and Technology 6, 295302.CrossRefGoogle Scholar
Ehlers, RU, Lunau, S, Krasomil-Osterfeld, K and Osterfeld, KH (1998) Liquid culture of the entomopathogenic nematode-bacterium complex Heterorhabditis megidis/Photorhabdus luminescens. Biocontrol 43, 7786.CrossRefGoogle Scholar
Ferreira, T, Addison, MF and Malan, AP (2014) In vitro liquid culture of a South African isolate of Heterorhabditis zealandica for the control of insect pests. African Entomology 22(1), 8092.CrossRefGoogle Scholar
Fife, JP, Derksen, RC, Ozkan, HE, Grewal, PS, Chalmers, JJ and Krause, CR (2004) Evaluation of a contraction flow field on hydrodynamic damage to entomopathogenic nematodes – a biological pest control agent. Biotechnology and Bioengineering 86(1), 96107.CrossRefGoogle ScholarPubMed
Gaugler, R and Han, R (2002) Production technology. pp. 289310 in Gaugler, R (Eds) Entomopathogenic nematology. Wallingford, CAB International.CrossRefGoogle Scholar
Hirao, A and Ehlers, RU (2009) Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Applied Microbiology and Biotechnology 84, 7785.CrossRefGoogle Scholar
Jessen, P, Strauch, O, Wyss, U, Luttman, R and Ehlers, RU (2000) Carbon dioxide triggers dauer juvenile recovery of entomopathogenic nematodes (Heterorhabditis spp.). Nematology 2, 319324.CrossRefGoogle Scholar
Johnikg, SA and Ehlers, RU (1999) Juvenile development and life cycle of Heterorhabditis bacteriophora and H. indica (Nematoda: Heterorhabditidae). Nematology 1(3), 251260.CrossRefGoogle Scholar
Lunau, S, Stoessel, S, Schmidt-Peisker, AJ and Ehlers, RU (1993) Establishment of monoxenic inocula for scaling up in vitro cultures of the entomopathogenic nematodes Steinernema spp. and Heterorhabditis spp. Nematologica 39, 385399.CrossRefGoogle Scholar
Steyn, VM, Malan, AP and Addison, P (2019) Control of false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae), using in vitro-cultured Steinernema jeffreyense and S. Yirgalemense. Biological Control 138, 104052.CrossRefGoogle Scholar
Strauch, O and Ehlers, RU (1998) Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Applied Microbiology and Biotechnology 50, 369374.CrossRefGoogle Scholar
Strauch, O and Ehlers, RU (2000) Influence of the aeration rate on the yields of the biocontrol nematode Heterorhabditis megidis in monoxenic liquid culture. Applied Microbiology and Biotechnology 54, 913.CrossRefGoogle Scholar
Strauch, O, Stoessel, S and Ehlers, RU (1994) Culture conditions define automictic or amphimictic reproduction in entomopathogenic Rhabditid nematodes of the genus Heterorhabditis. Fundamental Applied of Nematology 17, 575582.Google Scholar
Wouts, WM (1981) Mass production of entomogenous nematode Heterorhabditis heliothis (Nematoda: Heterorhabditidae) on artificial media. Journal of Nematology 13(4), 467469.Google Scholar
Yoo, SK, Brown, I and Gaugler, R (2000) Liquid media development for Heterorhabditis bacteriophora; lipid source and concentration. Applied Microbiology and Biotechnology 54, 759763.CrossRefGoogle ScholarPubMed