Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T09:55:47.561Z Has data issue: false hasContentIssue false

Clarification of the systematic position of Cercariaeum crassum Wesenberg-Lund, 1934 (Digenea), based on karyological analysis and DNA sequences

Published online by Cambridge University Press:  27 July 2011

R. Petkevičiūtė*
Affiliation:
Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412Vilnius, Lithuania
V. Stunžėnas
Affiliation:
Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412Vilnius, Lithuania
G. Stanevičiūtė
Affiliation:
Institute of Ecology, Nature Research Centre, Akademijos str. 2, LT-08412Vilnius, Lithuania
*
*Fax: +370 5 2729352 E-mail: romualda@ekoi.lt

Abstract

Chromosome set and rDNA sequences of the larval digenean Cercariaeum crassum were analysed in order to clarify its systematic position and possible adult form. Parasites were obtained from the sphaeriid bivalve Pisidium amnicum, collected in Lithuanian and Finnish rivers. The karyotype is shown to consist of five pairs (2n = 10) of large, up to 14 μm, chromosomes. Complement, composed of a low diploid number of exclusively bi-armed elements, presumably arose through Robertsonian fusions of acrocentric chromosomes. Consistent with a Robertsonian-derived karyotype, one or two small, metacentric, mitotically stable B chromosomes were detected in the cells of parthenitae isolated from some host individuals. A phylogenetic analysis using rDNA internal transcribed spacer 2 (ITS2) and 28S sequences corroborates the allocation of C. crassum to the family Allocreadiidae. In neighbour-joining and maximum parsimony phylogenetic trees C. crassum clusters into one clade with Allocreadium spp., and is the closest sister group in relation to A. isoporum; the level of rDNA sequence divergence between them (2.67% for ITS2 and 1.16% for 28S) is consistent with the level expected for intrageneric variation. The present study adds significant information to a database for establishing species-specific characters for confident characterization of different developmental stages of allocreadiid species, clarification of their life cycles and evaluation of intra- and interspecific variability.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baršienė, J. (1993) The karyotypes of trematodes. 370 pp. Vilnius, Academia (in Russian).Google ScholarPubMed
Blair, D. (2006) Ribosomal DNA variation in parasitic flatworms. pp. 96123in Maule, A.G. & Marks, N.J. (Eds) Parasitic flatworms. Molecular biology, biochemistry, immunology and physiology. Wallingford, CABI.CrossRefGoogle Scholar
Borowik, O.A. & Engstrom, M.D. (1993) Chromosomal evolution and biogeography of collared lemmings (Dicrostonyx) in the eastern and High Arctic of Canada. Canadian Journal of Zoology 71, 14811493.CrossRefGoogle Scholar
Bowles, J., Blair, D. & McManus, D.P. (1995) A molecular phylogeny of the human schistosomes. Molecular Phylogenetics and Evolution 4, 103109.CrossRefGoogle ScholarPubMed
Caira, J.N. (1989) A revision of the North American papillose Allocreadiidae (Digenea) with independent cladistic analyses of larval and adult forms. Bulletin of the University of Nebraska State Museum 11, 158.Google Scholar
Caira, J.N. & Bogea, T. (2005) Family Allocreadiidae Looss, 1902. pp. 417436in Jones, A., Gibson, D.I. & Bray, R.A. (Eds) Keys to the Trematoda. Vol. 2, Wallingford, CABI.Google Scholar
Camacho, J.P.M., Sharbel, T.F. & Beukeboom, L.W. (2000) B-chromosome evolution. Philosophical Transactions of the Royal Society B 355, 163178.CrossRefGoogle ScholarPubMed
Campbell, R.A. (2008) Family Gorgoderidae Looss, 1899. pp. 191213in Bray, R.A., Gibson, D.I. & Jones, A. (Eds) Keys to the Trematoda. Vol. 3, Wallingford, CABI.Google Scholar
Choudhury, A. & León Règagnon, V. (2005) Molecular phylogenetics and biogeography of Bunodera spp. (Trematoda: Allocreadiidae), parasites of percid and gasterosteid fishes. Canadian Journal of Zoology 83, 15401546.CrossRefGoogle Scholar
Choudhury, A., Rosas Valdez, R., Johnson, R.C., Hoffmann, B. & Pérez-Ponce de León, G. (2007) The phylogenetic position of Allocreadiidae (Trematoda: Plagiorchiiformes) from partial sequences of the 18S and 28S ribosomal RNA genes. Journal of Parasitology 93, 192196.CrossRefGoogle Scholar
Combes, C. (2001) Parasitism. The ecology and evolution of intimate interactions. 728 pp. Chicago, The University of Chicago Press.Google Scholar
Curran, S.S., Tkach, V.V. & Overstreet, R.M. (2006) A review of Polylekithum Arnold, 1934 and its familiar affinities using morphological and molecular data, with description of Polylekithum catahoulensis sp. nov. Acta Parasitologica 51, 238248.CrossRefGoogle Scholar
Grossman, A.L., Short, R.B. & Cain, G.D. (1981) Karyotype evolution and sex chromosome differentiation in schistosomes (Trematoda, Schistosomatidae). Chromosoma 84, 413430.CrossRefGoogle ScholarPubMed
Holopainen, I.J., Lamberg, S., Valtonen, E.T. & Rantanen, J. (1997) Effects of parasites on the life history of the freshwater bivalve, Pisidium amnicum, in eastern Finland. Archiv für Hydrobiologie 139, 461477.CrossRefGoogle Scholar
Jones, R.N. & Rees, H. (1982) B chromosomes. 266 pp. New York, Academic Press.Google Scholar
Killeen, I., Aldridge, D. & Oliver, G. (2004) Freshwater bivalves of Britain and Ireland. 114 pp. Shropshire, FSC Publications.Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle ScholarPubMed
Kuiper, J.G.J., Økland, K.A., Knudsen, J., Koli, L., von Proschwitz, T. & Valovirta, I. (1989) Geographical distribution of the small mussels (Sphaeriidae) in North Europe (Denmark, Faroes, Finland, Iceland, Norway and Sweden). Annales Zoologici Fennici 26, 73101.Google Scholar
Levan, A., Fredga, K. & Sandberg, A.A. (1964) Nomenclature for centromere position in chromosomes. Hereditas 52, 101220.Google Scholar
Mackie, G.L. (1976) Trematode parasitism in the Sphaeriididae clams, and the effects in three Ottawa River species. The Nautilus 90, 3641.Google Scholar
Nei, M. & Kumar, S. (2000) Molecular evolution and phylogenetics. 333 pp. New York, Oxford University Press.CrossRefGoogle Scholar
Niewiadomska, K. & Valtonen, E.T. (2007) Morphology, development and probable systematic position of Cercariaeum crassum Wesenberg-Lund, 1934 (Digenea), a parasite of Pisidium amnicum in eastern Finland. Systematic Parasitology 68, 147154.CrossRefGoogle ScholarPubMed
Park, G.-M., Im, K.-I., Huh, S. & Yong, T.-S. (2000) Chromosomes of the liver fluke, Clonorchis sinensis. Korean Journal of Parasitology 38, 201206.CrossRefGoogle ScholarPubMed
Patton, J.L. (1977) B-chromosome systems in the pocket mouse, Perognathus baileyi: meiosis and C-band studies. Chromosoma 60, 114.CrossRefGoogle ScholarPubMed
Peppers, J.A., Wiggins, L.E. & Baker, J.R. (1997) Nature of B chromosomes in the harvest mouse Reithrodontomys megalotis by fluorescence in situ hybridization (FISH). Chromosome Research 5, 475479.CrossRefGoogle ScholarPubMed
Pérez-Ponce de León, G., Choudhury, A., Rosas-Valdez, R. & Mejía-Madrid, H.H. (2007) The systematic position of Wallinia spp. and Margotrema spp. (Digenea), parasites of Middle-American and Neotropical freshwater fishes, based on the 28S ribosomal RNA gene. Systematic Parasitology 68, 4955.CrossRefGoogle ScholarPubMed
Petkevičiūtė, R. & Baršienė, J. (1988) The comparative karyological analysis of three species of trematodes of genus Notocotylus. Parazitologiya 22, 2128(in Russian).Google Scholar
Petkevičiūtė, R. & Stanevičiūtė, G. (1999) Karyotypic characterization of Apatemon gracilis. Journal of Helminthology 73, 7377.CrossRefGoogle Scholar
Petkevičiūtė, R. & Stanevičiūtė, G. (2008) Comparative karyological analysis of three members of Allocreadiidae (Digenea): taxonomic and phylogenetic implications. Parasitology Research 103, 11051110.CrossRefGoogle ScholarPubMed
Petkevičiūtė, R., Kiselienė, V. & Stenko, R.P. (1989) Cytogenetic analysis of two populations of Diplodiscus subclavatus (Trematoda, Diplodiscidae). Parazitologiya 23, 489495(in Russian).Google Scholar
Petkevičiūtė, R., Stunžėnas, V., Stanevičiūtė, G. & Sokolov, S.G. (2010) Comparison of the developmental stages of some European allocreadiid trematode species and a clarification of their life-cycles based on ITS2 and 28S sequences. Systematic Parasitology 76, 169178.CrossRefGoogle Scholar
Piechocki, A. (1989) The Sphaeriidae of Poland (Bivalvia, Eulamellibranchia). Annales Zoologici 42, 249320.Google Scholar
Rantanen, J.T., Valtonen, E.T. & Holopainen, I.J. (1998) Digenean parasites of the bivalve mollusc Pisidium amnicum in a small river in eastern Finland. Diseases of Aquatic Organisms 33, 201208.CrossRefGoogle Scholar
Rauckis, E. (1988) Fish parasites in Lithuanian waters. 208 pp. Vilnius, Mokslas (in Russian).Google Scholar
Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Sokolov, S.G., Tseitlin, D.G., Afanasyev, K.I., Malinina, T.V. & Rubtsova, G.A. (2006) A comparative study of two sympatric subspecies of trematodes, Bunodera luciopercae luciopercae (Müller, 1776) and B. l. acerinae Roitman et Sokolov, 1999 (Trematoda: Bunoderidae). Invertebrate Zoology 3, 209223(in Russian).CrossRefGoogle Scholar
Špakulová, M. & Casanova, J.C. (2004) Current knowledge on B chromosomes in natural populations of helminth parasites: a review. Cytogenetic and Genome Research 106, 222229.CrossRefGoogle Scholar
Stunžėnas, V., Cryan, J.R. & Molloy, D.P. (2004) Comparison of rDNA sequences from colchicine treated and untreated tissues. Parasitology International 53, 223228.CrossRefGoogle Scholar
Stunžėnas, V., Petkevičiūtė, R. & Stanevičiūtė, G. (2011) Phylogeny of Sphaerium solidum (Bivalvia) based on karyotype and sequences of 16S and ITS1 rDNA. Central European Journal of Biology 6, 105117.Google Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Tkach, V., Grabda-Kazubska, B., Pawlowski, J. & Swiderski, Z. (1999) Molecular and morphological evidences for close phylogenetic affinities of the genera Macrodera, Leptophallus, Metaleptophallus, and Paralepoderma (Digenea, Plagiorchioidea). Acta Parasitologica 44, 170179.Google Scholar
Volobujev, V.T. (1981) B-chromosome system of the mammals. Caryologia 34, 123.CrossRefGoogle Scholar
Vujošević, M. & Blagojević, J. (2004) B chromosomes in population of mammals. Cytogenetic and Genome Research 106, 247256.CrossRefGoogle ScholarPubMed
White, M.J.D. (1973) Animal cytology and evolution. 468 pp. Cambridge, Cambridge University Press.Google Scholar
Zdun, V.I. (1961) Larvae of trematodes in freshwater molluscs of Ukraine. 142 pp. Kyiv, Vydavnytstvo AN SSSR (in Ukrainian).Google Scholar
Zhokhov, A.E. (1991) Structure and community of trematodes in a population of Pisidium amnicum molluscs. Parazitologiya 25, 426434(in Russian).Google Scholar