Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-23T18:30:07.186Z Has data issue: false hasContentIssue false

Activity in vitro of fungal conidia of Duddingtonia flagrans and Monacrosporium thaumasium on Haemonchus contortus infective larvae

Published online by Cambridge University Press:  21 July 2010

A.R. Silva*
Affiliation:
Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brasil
J.V. Araújo
Affiliation:
Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brasil
F.R. Braga
Affiliation:
Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brasil
C.D.F. Alves
Affiliation:
Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brasil
L.N. Frassy
Affiliation:
Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brasil

Abstract

The objective of this work was to evaluate the predatory activity of the fungi Duddingtonia flagrans (AC001) and Monacrosporium thaumasium (NF34a) on Haemonchus contortus infective larvae (L3) in two experimental assays (A and B). In assay A, two treatments and one control were formed and kept for 7 days in Petri dishes with 2% water-agar. Each treatment consisted of 1000 H. contortus L3 and 1000 conidia of only one fungal isolate, and the control group consisted of 1000 L3, without fungus, with 10 repetitions per group. In assay B, 1000 conidia of one of the fungal isolates, AC001 or NF34a, were added to coprocultures made from 20 g of faeces collected from sheep naturally infected with H. contortus. At the end of the experiment, the Baermann method was used to count the non-predated larvae of all Petri dishes from treatment and control groups. In assay A, no difference was observed (P>0.05) between the groups treated with AC001 and NF34a fungi. A difference was observed (P < 0.05) between the treated and control groups. The L3 reduction percentages at the end of the experiment were 87.75 and 85.57%, respectively, for the fungal isolates compared to the control group. In assay B, the reduction percentages for conidia of these isolates were 85.82 and 87.32%, respectively. The results obtained show that D. flagrans (AC001) and M. thaumasium (NF34a) were effective in the in vitro control of sheep H. contortus L3 and could be used in the biological control of this nematode.

Type
Regular research papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amarante, A.F.T., Susin, I., Rocha, R.A., Silva, M.B., Mendes, C.Q. & Pires, A.V. (2009) Resistance of Santa Ines and crossbred ewes to naturally acquired gastrointestinal nematode infections. Veterinary Parasitology 165, 273280.CrossRefGoogle Scholar
Araújo, J.V., Santos, M.A., Ferraz, S., Maia, A.S. & Magalhães, A.C.M. (1992) Controle de larvas infectantes de Haemonchus placei por fungos predadores da espécie Monacrosporium ellypsosporum em condições de laboratório. Arquivo Brasileiro de Medicina Veterinária Zootecnia 44, 521526.Google Scholar
Araújo, J.V., Santos, M.A., Ferraz, S. & Maia, A.S. (1993) Antagonistic effect of predacious Arthrobotrys fungi on infective Haemonchus placei larvae. Journal of Helminthology 67, 136138.CrossRefGoogle ScholarPubMed
Ayres, M., Ayres, J.R.M., Ayres, D.L. & Santos, A.S. (2003) Aplicacões estatísticas nas áreas de ciências biológicas. 290 pp. Brasília, CNPq.Google Scholar
Braga, F.R., Carvalho, R.O., Araujo, J.M., Silva, A.R., Araújo, J.V., Lima, W.S., Tavela, A.O. & Ferreira, S.R. (2009) Predatory activity of the fungi Duddingtonia flagrans, Monacrosporium thaumasium, Monacrosporium sinense and Arthrobotrys robusta on Angiostrongylus vasorum first-stage larvae. Journal of Helminthology 83, 303308.CrossRefGoogle ScholarPubMed
Getachew, T., Dorchies, P. & Jacquiet, P. (2007) Trends and challenges in the effective and sustainable control of Haemonchus contortus infection in sheep. Parasite 14, 314.CrossRefGoogle ScholarPubMed
Gordon, H.M. & Whitlock, H.V. (1939) A new technique for counting nematode eggs in sheep faeces. Journal of Council Scientific Industrial Research 12, 5052.Google Scholar
Gronvold, J., Henriksen, S.A., Larsen, M., Nansen, P. & Wolstrup, J. (1996) Aspects of biological control with special reference to arthropods, protozoans and helminths of domesticated animals. Veterinary Parasitology 64, 4764.CrossRefGoogle ScholarPubMed
Keith, R.K. (1953) The differentiation of infective larvae of some common nematode parasites of cattle. Australian Journal of Zoology 1, 223235.CrossRefGoogle Scholar
Larsen, M. (1999) Biological control of helminthes. International Journal for Parasitology 29, 139146.CrossRefGoogle Scholar
Roberts, I.H. & O'Sullivan, P.J. (1950) Methods for egg counts and larval cultures for strongyles infesting the gastrointestinal tract of cattle. Australian Journal of Agricultural Research 1, 99102.CrossRefGoogle Scholar
Silva, A.R., Araújo, J.V., Braga, F.R., Frassy, L.N., Tavela, A.O., Carvalho, R.O. & Castejon, F.V. (2009) Biological control of sheep gastrointestinal nematodiosis in a tropical region of the southeast of Brazil with the nematode predatory fungi Duddingtonia flagrans and Monacrosporium thaumasium. Parasitology Research 105, 17071713.CrossRefGoogle Scholar
Terril, T.H., Larsen, M., Samples, O., Husted, S., Miller, J.H., Kaplan, R.M. & Gelaye, S. (2004) Capability of the nematode-trapping fungus Duddingtonia flagrans to reduce infective larvae of gastrointestinal nematodes in goat feces in the southeastern United States: dose titration and dose time interval studies. Veterinary Parasitology 120, 285296.CrossRefGoogle Scholar
Waller, P.J., Larsen, M., Faedo, M. & Henessy, D.R. (1994) The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: in vitro and in vivo studies. Veterinary Parasitology 51, 289299.CrossRefGoogle ScholarPubMed