Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T23:28:30.664Z Has data issue: false hasContentIssue false

Weakly nonlinear analysis of thermoacoustic oscillations in can-annular combustors

Published online by Cambridge University Press:  16 February 2024

Alessandro Orchini*
Affiliation:
Chair of Nonlinear Thermo-Fluid Mechanics, Institute of Fluid Mechanics and Technical Acoustics, Technische Universität Berlin, Müller-Breslau Straße 8, 10623 Berlin, Germany
Jonas P. Moeck
Affiliation:
Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
*
Email address for correspondence: a.orchini@tu-berlin.de

Abstract

Can-annular combustors feature clusters of thermoacoustic eigenvalues, which originate from the weak acoustic coupling between $N$ identical cans at the downstream end. When instabilities occur, one needs to consider the nonlinear interaction between all $N$ modes in the unstable cluster in order to predict the steady-state behaviour. A nonlinear reduced-order model for the analysis of this phenomenon is developed, based on the balance equations for acoustic mass, momentum and energy. Its linearisation yields explicit expressions for the $N$ complex-valued eigenfrequencies that form a cluster. To treat the nonlinear equations semianalytically, a Galerkin projection is performed, resulting in a nonlinear system of $N$ coupled oscillators. Each oscillator represents the dynamics of a global mode that oscillates in the whole can-annular combustor. The analytical expressions of the equations reveal how the geometrical and thermofluid parameters affect the thermoacoustic response of the system. To gain further insights, the method of averaging is applied to obtain equations for the slow-time dynamics of the amplitude and phase of each mode. The averaged system, whose solutions compare very well with those of the full oscillator equations, is shown to be able to predict complex transient dynamics. A variety of dynamical states are identified in the steady-state oscillatory regime, including push–push (in-phase) and spinning oscillations. Notably, the averaged equations are able to predict the existence of synchronised states. These states occur when the frequencies of two (or more) unstable modes with nominally different frequencies lock onto a common frequency as a result of nonlinear interactions.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, V.S., Bothien, M.R. & Lieuwen, T.C. 2018 Non-linear dynamics of thermoacoustic eigen-mode interactions. Combust. Flame 194, 309321.CrossRefGoogle Scholar
Balanov, A., Janson, N., Postnov, D. & Sosnovtseva, O. 2009 Synchronization: From Simple to Complex. Springer.Google Scholar
Bauerheim, M., Nicoud, F. & Poinsot, T. 2016 Progress in analytical methods to predict and control azimuthal combustion instability modes in annular chambers. Phys. Fluids 28, 021303.CrossRefGoogle Scholar
Bethke, S., Krebs, W., Flohr, P. & Prade, B. 2002 Thermoacoustic properties of can annular combustors. In 8th AIAA/CEAS Aeroacoustics Conference & Exhibit, 2570.Google Scholar
Bonciolini, G. & Noiray, N. 2019 Synchronization of thermoacoustic modes in sequential combustors. Trans. ASME J. Engng Gas Turbines Power 141, 031010.CrossRefGoogle Scholar
Bothien, M.R. & Wassmer, D. 2015 Impact of density discontinuities on the resonance frequency of Helmholtz resonators. AIAA J. 53, 877887.CrossRefGoogle Scholar
Bourgouin, J.-F., Durox, D., Moeck, J.P., Schuller, T. & Candel, S. 2015 A new pattern of instability observed in an annular combustor: the slanted mode. Proc. Combust. Inst. 35, 32373244.CrossRefGoogle Scholar
Buschmann, P.E., Worth, N.A. & Moeck, J.P. 2023 Thermoacoustic oscillations in a can-annular model combustor with asymmetries in the can-to-can coupling. Proc. Combust. Inst. 39, 57075715.CrossRefGoogle Scholar
Candel, S. 2002 Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29, 128.CrossRefGoogle Scholar
Chen, G., Li, Z., Tang, L. & Yu, Z. 2021 Mutual synchronization of self-excited acoustic oscillations in coupled thermoacoustic oscillators. J. Phys. D: Appl. Phys. 54, 485504.CrossRefGoogle Scholar
Culick, F.E.C. 2006 Unsteady motions in combustion chambers for propulsion systems. AGARDograph, RTO AG-AVT-039.Google Scholar
Dowling, A.P. 1997 Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346, 271290.CrossRefGoogle Scholar
Faure-Beaulieu, A., Indlekofer, T., Dawson, J.R. & Noiray, N. 2021 Imperfect symmetry of real annular combustors: beating thermoacoustic modes and heteroclinic orbits. J. Fluid Mech. 925, 111.CrossRefGoogle Scholar
Fournier, G.J.J., Meindl, M., Silva, C.F., Ghirardo, G., Bothien, M.R. & Polifke, W. 2021 Low-order modeling of can-annular combustors. Trans. ASME J. Engng Gas Turbines Power 143, 121004.CrossRefGoogle Scholar
Ghirardo, G., Giovine, C.D., Moeck, J.P. & Bothien, M.R. 2019 Thermoacoustics of can-annular combustors. Trans. ASME J. Engng Gas Turbines Power 141, 011007.CrossRefGoogle Scholar
Ghirardo, G., Juniper, M.P. & Bothien, M.R. 2018 The effect of the flame phase on thermoacoustic instabilities. Combust. Flame 187, 165184.CrossRefGoogle Scholar
Ghirardo, G., Juniper, M.P. & Moeck, J.P. 2016 Weakly nonlinear analysis of thermoacoustic instabilities in annular combustors. J. Fluid Mech. 805, 5287.CrossRefGoogle Scholar
Guan, Y., Gupta, V., Wan, M. & Li, L.K.B. 2019 Forced synchronization of quasiperiodic oscillations in a thermoacoustic system. J. Fluid Mech. 879, 390421.CrossRefGoogle Scholar
Guan, Y., Moon, K., Kim, K.T. & Li, L.K. 2022 Synchronization and chimeras in a network of four ring-coupled thermoacoustic oscillators. J. Fluid Mech. 938, A5.CrossRefGoogle Scholar
Guan, Y., Moon, K., Kim, K.T. & Li, L.K.B. 2021 Low-order modeling of the mutual synchronization between two turbulent thermoacoustic oscillators. Phys. Rev. E 104, 024216.CrossRefGoogle ScholarPubMed
Howe, M.S. 1997 Influence of wall thickness on Rayleigh conductivity and flow-induced aperture tones. J. Fluids Struct. 11, 351366.CrossRefGoogle Scholar
Kashinath, K., Li, L.K.B. & Juniper, M.P. 2018 Forced synchronization of periodic and aperiodic thermoacoustic oscillations: lock-in, bifurcations and open-loop control. J. Fluid Mech. 838, 690714.CrossRefGoogle Scholar
Keller, J.J. 1995 Thermoacoustic oscillations in combustion chambers of gas turbines. AIAA J. 33, 22802287.CrossRefGoogle Scholar
Lieuwen, T., Yang, V. (Ed.) 2005 Combustion Instabilities in Gas Turbine Engines. Progress in Astronautics and Aeronautics, vol. 210. AIAA.Google Scholar
Magri, L., Bauerheim, M. & Juniper, M.P. 2016 Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part I. Sensitivity. J. Comput. Phys. 325, 395410.CrossRefGoogle Scholar
Mensah, G.A., Campa, G. & Moeck, J.P. 2016 Efficient computation of thermoacoustic modes in industrial annular combustion chambers based on Bloch-wave theory. Trans. ASME J. Engng Gas Turbines Power 138, 081502.CrossRefGoogle Scholar
Mensah, G.A., Magri, L., Orchini, A. & Moeck, J.P. 2018 Effects of asymmetry on thermoacoustic modes in annular combustors: a higher-order perturbation study. Trans. ASME J. Engng Gas Turbines Power 141, 041030.CrossRefGoogle Scholar
Moeck, J.P., Durox, D., Schuller, T. & Candel, S. 2019 Nonlinear thermoacoustic mode synchronization in annular combustors. Proc. Combust. Inst. 37, 53435350.CrossRefGoogle Scholar
Moeck, J.P. & Paschereit, C.O. 2012 Nonlinear interactions of multiple linearly unstable thermoacoustic modes. Intl J. Spray Combust. Dyn. 4, 128.CrossRefGoogle Scholar
Mondal, S., Pawar, S.A. & Sujith, R.I. 2018 Synchronization Transition in a Thermoacoustic System: Temporal and Spatiotemporal Analyses, pp. 125150. Springer.Google Scholar
Moon, K., Guan, Y., Li, L.K.B. & Kim, K.T. 2020 a Mutual synchronization of two flame-driven thermoacoustic oscillators: dissipative and time-delayed coupling effects. Chaos 30, 023110.CrossRefGoogle ScholarPubMed
Moon, K., Jegal, H., Yoon, C. & Kim, K.T. 2020 b Cross-talk-interaction-induced combustion instabilities in a can-annular lean-premixed combustor configuration. Combust. Flame 220, 178188.CrossRefGoogle Scholar
Noiray, N., Bothien, M. & Schuermans, B. 2011 Investigation of azimuthal staging concepts in annular gas turbines. Combust. Theory Model. 15, 585606.CrossRefGoogle Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139167.CrossRefGoogle Scholar
Noiray, N. & Schuermans, B. 2013 On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers. Proc. R. Soc. Lond. A 469, 20120535.Google Scholar
Olson, B.J., Shaw, S.W., Shi, C., Pierre, C. & Parker, R.G. 2014 Circulant matrices and their application to vibration analysis. Appl. Mech. Rev. 66, 040803.CrossRefGoogle Scholar
Orchini, A. & Juniper, M.P. 2016 Flame double input describing function analysis. Combust. Flame 171, 87102.CrossRefGoogle Scholar
Orchini, A., Pedergnana, T., Buschmann, P.E., Moeck, J.P. & Noiray, N. 2022 Reduced-order modelling of thermoacoustic instabilities in can-annular combustors. J. Sound Vib. 526, 116808.CrossRefGoogle Scholar
Orchini, A., Rigas, G. & Juniper, M.P. 2016 Weakly nonlinear analysis of thermoacoustic bifurcations in the Rijke tube. J. Fluid Mech. 805, 523550.CrossRefGoogle Scholar
Panek, L., Farisco, F. & Huth, M. 2017 Thermo-acoustic characterization of can-can interaction of a can-annular combustion system based on unsteady CFD LES simulation. In Global Power and Propulsion Forum, pp. GPPF–2017–81.Google Scholar
Pawar, S.A., Seshadri, A., Unni, V.R. & Sujith, R.I. 2017 Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent reactive flow. J. Fluid Mech. 827, 664693.CrossRefGoogle Scholar
Pedergnana, T., Bourquard, C., Faure-Beaulieu, A. & Noiray, N. 2021 Modeling the nonlinear aeroacoustic response of a harmonically forced side branch aperture under turbulent grazing flow. Phys. Rev. Fluids 6, 023903.CrossRefGoogle Scholar
Pedergnana, T. & Noiray, N. 2022 Steady-state statistics, emergent patterns and intermittent energy transfer in a ring of oscillators. Nonlinear Dyn. 108, 11331163.CrossRefGoogle Scholar
Pikovsky, A., Rosenblum, M. & Kurths, J. 2001 Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press.CrossRefGoogle Scholar
Poinsot, T. 2017 Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36, 128.CrossRefGoogle Scholar
Rayleigh, Lord 1878 The explanation of certain acoustical phenomena. Nature 18, 319321.CrossRefGoogle Scholar
Rienstra, S.W. & Hirschberg, A. 2004 An Introduction to Acoustics. Eindhoven University of Technology.Google Scholar
von Saldern, J.G., Moeck, J.P. & Orchini, A. 2021 a Nonlinear interaction between clustered unstable thermoacoustic modes in can-annular combustors. Proc. Combust. Inst. 38, 61456153.CrossRefGoogle Scholar
von Saldern, J.G.R., Orchini, A. & Moeck, J.P. 2021 b A non-compact effective impedance model for can-to-can acoustic communication: analysis and optimization of damping mechanisms. Trans. ASME J. Engng Gas Turbines Power 143, 121024.CrossRefGoogle Scholar
von Saldern, J.G.R., Orchini, A. & Moeck, J.P. 2021 c Analysis of thermoacoustic modes in can-annular combustors using effective Bloch-type boundary conditions. Trans. ASME J. Engng Gas Turbines Power 143, 071019.CrossRefGoogle Scholar
Strogatz, S.H. 1994 Nonlinear Dynamics and Chaos. Perseus Books.Google Scholar
Strogatz, S.H. 2004 Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life. Hyperion.Google Scholar
Supplementary material: File

Orchini and Moeck supplementary material 1

Phase portrait of spinning oscillations
Download Orchini and Moeck supplementary material 1(File)
File 5.5 MB
Supplementary material: File

Orchini and Moeck supplementary material 2

Phase portrait of push-push oscillations
Download Orchini and Moeck supplementary material 2(File)
File 2 MB
Supplementary material: File

Orchini and Moeck supplementary material 3

Phase portrait of synchronised oscillations
Download Orchini and Moeck supplementary material 3(File)
File 3.6 MB