Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T00:49:49.894Z Has data issue: false hasContentIssue false

Upscale transfer of waves in one-dimensional rotating shallow water

Published online by Cambridge University Press:  14 April 2023

Jim Thomas*
Affiliation:
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India Centre for Applicable Mathematics, Tata Institute of Fundamental Research, Bangalore 560065, India
Lingyun Ding
Affiliation:
Department of Mathematics, University of California, Los Angeles, CA 90095, USA
*
Email address for correspondence: jimthomas.edu@gmail.com

Abstract

We study the inverse flux of waves in one of the simplest geophysical fluid dynamics models: one-dimensional rotating shallow water equations. Based on direct numerical integration of the governing equations, we find that waves injected at small scales get transferred upscale predominantly via resonant quartic interactions between wave modes. The waves’ upscale transfer is non-local and involves turbulent transfer between disparate scales of the flow. Our analysis reveals that the upscale transfer of waves is extremely intermittent and is a result of localized-in-time bursts in wave action flux. These intermittent events of flux bursts lead to shallower waves’ spectrum and relatively higher amplitude wave fields in physical space. On examining statistics of the flow fields, we find that low-energy high wavenumbers more or less comply with the assumptions used in wave turbulence theory, such as uniformly distributed wave phases and the Gaussian distribution of fields, while non-uniform distribution of wave phases and non-Gaussian statistics dominate at large scales or low wavenumbers that contain a major share of the flow energy. Our findings point out that the one-dimensional rotating shallow water equations, despite being a simple geophysical fluid dynamic model, harbour complex and intricate features associated with the upscale transfer of waves that have not been recognized in the past.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, M.H, MacKinnon, J.A., Simmons, H.L. & Nash, J.D. 2016 Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci. 8, 95123.CrossRefGoogle ScholarPubMed
Alvelius, K. 1999 Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11, 18801889.CrossRefGoogle Scholar
Annenkov, S.Y. & Shrira, V.I. 2006 Direct numerical simulation of downshift and inverse cascade for water wave turbulence. Phys. Rev. Lett. 96, 204501.CrossRefGoogle ScholarPubMed
Aubourg, Q. & Mordant, N. 2015 Nonlocal resonances in weak turbulence of gravity-capillary waves. Phys. Rev. Lett. 114, 144501.CrossRefGoogle ScholarPubMed
Babin, A., Mahalov, A. & Nicolaenko, B. 1997 Global splitting and regularity of rotating shallow-water equations. Eur. J. Mech. (B/Fluids) 16 (1), 725754.Google Scholar
Bartello, P. 1995 Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52, 44104428.2.0.CO;2>CrossRefGoogle Scholar
Bouchut, F., Le Sommer, J. & Zeitlin, V. 2004 Frontal geostrophic adjustment and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 2: high-resolution numerical simulations. J. Fluid Mech. 514, 3563.CrossRefGoogle Scholar
Brasseur, J.G. & Wei, C.-H. 1994 Interscale dynamics and local isotropy in high Reynolds number turbulence within triadic interaction. Phys. Fluids 6, 842870.CrossRefGoogle Scholar
Bretherton, F.P. 1969 On the mean motion induced by internal gravity waves. J. Fluid Mech. 36, 785803.CrossRefGoogle Scholar
Cai, D., Majda, A.J., McLaughlin, D.W. & Tabak, E.G. 1999 Spectral bifurcations in dispersive wave turbulence. Proc. Natl Acad. Sci. USA 96, 1421614221.CrossRefGoogle ScholarPubMed
Cai, D., Majda, A.J., McLaughlin, D.W. & Tabak, E.G. 2001 Dispersive wave turbulence in one dimension. Physica D 152, 551572.CrossRefGoogle Scholar
Cardesa, J.I., Vela-Martin, A. & Jimenez, J. 2017 The turbulent cascade in five dimensions. Science 357, 782784.CrossRefGoogle ScholarPubMed
Chibbaro, S. & Josserand, C. 2016 Elastic wave turbulence and intermittency. Phys. Rev. E 94, 011101.CrossRefGoogle ScholarPubMed
D'Asaro, E.A. 1985 Upper ocean temperature structure, inertial currents, and Richardson numbers observed during strong meteorological forcing. J. Phys. Oceanogr. 15, 943962.2.0.CO;2>CrossRefGoogle Scholar
Deike, L., Laroche, C. & Falcon, E. 2011 Experimental study of the inverse cascade in gravity wave turbulence. Europhys. Lett. 96, 34004.CrossRefGoogle Scholar
Domaradzki, J.A. & Carati, D. 2007 An analysis of the energy transfer and the locality of nonlinear interactions in turbulence. Phys. Fluids 19, 085112.CrossRefGoogle Scholar
Domaradzki, J.A. & Rogallo, R.S. 1990 Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence. Phys. Fluids A 2, 413426.CrossRefGoogle Scholar
Dong, W., Bühler, O. & Smith, K.S. 2020 Frequency diffusion of waves by unsteady flows. J. Fluid Mech. 905, R3.CrossRefGoogle Scholar
Elgar, S. & Raubenheimer, B. 2020 Field evidence of inverse energy cascades in the surfzone. J. Phys. Oceanogr. 50, 23152321.CrossRefGoogle Scholar
Eyink, G.L. & Aluie, H. 2009 Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys. Fluids 21, 115107.CrossRefGoogle Scholar
Falcon, E., Aumaitre, S., Falcon, C., Laroche, C. & Fauve, S. 2008 Fluctuations of energy flux in wave turbulence. Phys. Rev. Lett. 100, 064503.CrossRefGoogle ScholarPubMed
Falcon, E., Fauve, S. & Laroche, C. 2007 a Observation of intermittency in wave turbulence. Phys. Rev. Lett. 15, 154501.CrossRefGoogle Scholar
Falcon, E., Laroche, C. & Fauve, S. 2007 b Observation of gravity-capillary wave turbulence. Phys. Rev. Lett. 98, 094503.CrossRefGoogle ScholarPubMed
Falcon, E., Michel, G., Prabhudesai, G., Cazaubiel, A., Berhanu, M., Mordant, N., Aumaitre, S. & Bonnefoy, F. 2020 Saturation of the inverse cascade in surface gravity-wave turbulence. Phys. Rev. Lett. 125, 134501.CrossRefGoogle ScholarPubMed
Falcon, E. & Mordant, N. 2022 Experiments in surface gravity-capillary wave turbulence. Annu. Rev. Fluid Mech. 54, 1–25.CrossRefGoogle Scholar
Falcon, E., Roux, S.G. & Laroche, C. 2010 On the origin of intermittency in wave turbulence. Europhys. Lett. 90, 34005.CrossRefGoogle Scholar
Falkovich, G.E. 1992 Inverse cascade and wave condensate in mesoscale atmospheric turbulence. Phys. Rev. Lett. 69, 31733176.CrossRefGoogle ScholarPubMed
Falkovich, G.E. & Medvedev, S.B. 1992 Kolmogorov-like spectrum for turbulence of inertial-gravity waves. Europhys. Lett. 19, 279284.CrossRefGoogle Scholar
Farge, M. & Sadourny, R. 1989 Wave-vortex dynamics in rotating shallow water. J. Fluid Mech. 206, 433462.CrossRefGoogle Scholar
Francois, N., Xia, H., Punzmann, H., Ramsden, S. & Shats, M. 2014 Three-dimensional fluid motion in Faraday waves: creation of vorticity and generation of two-dimensional turbulence. Phys. Rev. X 4, 021021.Google Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Garrett, C. 2001 What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr. 31, 962971.2.0.CO;2>CrossRefGoogle Scholar
Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.CrossRefGoogle Scholar
Glazman, R.E. 1996 Spectra of baroclinic inertia-gravity wave turbulence. J. Phys. Oceanogr. 26, 12561265.2.0.CO;2>CrossRefGoogle Scholar
Korotkevitch, A.O. 2008 Simultaneous numerical simulation of direct and inverse cascades in wave turbulence. Phys. Rev. Lett. 101, 074501.Google Scholar
Kuo, A. & Polvani, L.M. 1997 Time-dependent fully nonlinear geostrophic adjustment. J. Phys. Oceanogr. 27, 16141634.2.0.CO;2>CrossRefGoogle Scholar
Kuo, A. & Polvani, L.M. 1999 Wave-vortex interactions in rotating shallow water. Part I. One space dimension. J. Fluid Mech. 394, 127.CrossRefGoogle Scholar
Lahaye, N. & Zeitlin, V. 2012 Decaying vortex and wave turbulence in rotating shallow water model, as follows from high-resolution direct numerical simulations. Phys. Fluids 24, 115106.CrossRefGoogle Scholar
Lesieur, M. 2008 Turbulence in Fluids, Fluid Mechanics and its Applications, vol. 84, 4th edn. Springer.CrossRefGoogle Scholar
MacKinnon, J., Alford, M.H., Sun, O., Pinkel, R., Zhao, Z. & Klymak, J. 2013 Parametric subharmonic instability of the internal tide at $29^\circ {\rm N}$. J. Phys. Oceanogr. 43, 1728.CrossRefGoogle Scholar
Majda, A.J. 2002 Introduction to Partial Differential Equations and Waves for the Atmosphere and Ocean-Courant Lecture Notes, Bd. 9. American Mathematical Society.Google Scholar
Majda, A.J., McLaughlin, D.W. & Tabak, E.G. 1997 A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci. 6, 944.CrossRefGoogle Scholar
Meyrand, R., Kiyani, K.H., Gurcan, O.D. & Galtier, S. 2018 Coexistence of weak and strong wave turbulence in incompressible Hall magnetohydrodynamics. Phys. Rev. X 8, 031066.Google Scholar
Moum, J.N. 2021 Variations in ocean mixing from seconds to years. Annu. Rev. Mar. Sci. 13, 201226.CrossRefGoogle ScholarPubMed
Muller, M., Arbic, B.K., Richman, J.G., Shriver, J.F., Kunze, E.L., Scott, R.B., Wallcraft, A.J. & Zamudio, L. 2015 Toward an internal gravity wave spectrum in global ocean models. Geophys. Res. Lett. 42, 34743481.CrossRefGoogle Scholar
Murray, B. & Bustamante, M.D. 2018 Energy flux enhancement, intermittency and turbulence via fourier triad phase dynamics in the 1-D Burgers equation. J. Fluid Mech. 850, 624645.CrossRefGoogle Scholar
Nazarenko, S. 2011 Wave Turbulence. Springer.CrossRefGoogle Scholar
Ohkitani, K. & Kida, S. 1992 Triad interactions in a forced turbulence. Phys. Fluids A 4, 794802.CrossRefGoogle Scholar
Pareschi, L. & Russo, G. 2005 Implicit-explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129155.Google Scholar
Pollmann, F. 2020 Global characterization of the ocean's internal wave spectrum. J. Phys. Oceanogr. 50, 18711891.CrossRefGoogle Scholar
Polvani, L.M., McWilliams, J.C., Spall, M.A. & Ford, R. 1994 The coherent structures of shallow-water turbulence: deformation-radius effects, cyclone/anticyclone asymmetry and gravity-wave generation. Chaos 4, 177186.CrossRefGoogle ScholarPubMed
Remmel, M. & Smith, L. 2009 New intermediate models for rotating shallow water and an investigation of the preference for anticyclones. J. Fluid Mech. 635, 321359.CrossRefGoogle Scholar
Renaud, A., Venaille, A. & Bouchet, F. 2016 Equilibrium statistical mechanics and energy partition for the shallow water model. J. Stat. Phys. 163, 784843.CrossRefGoogle Scholar
Reznik, G.M. 2015 Wave adjustment: general concept and examples. J. Fluid Mech. 779, 514543.CrossRefGoogle Scholar
Salmon, R. 1978 Lectures on Geophysical Fluid Dynamics. Oxford University Press.Google Scholar
Shcherbina, A.Y. et al. 2015 The latmix summer campaign: submesoscale stirring in the upper ocean. Bull. Am. Meteorol. Soc. 96, 12571279.CrossRefGoogle Scholar
Soh, H.S. & Kim, S.Y. 2018 Diagnostic characteristics of submesoscale coastal surface currents. J. Geophys. Res. 123, 18381859.CrossRefGoogle Scholar
Suanda, S.H., Feddersen, F., Spydell, M.S. & Kumar, N. 2018 The effect of barotropic and baroclinic tides on three-dimensional coastal dispersion. Geophys. Res. Lett. 45, 1123511246.CrossRefGoogle Scholar
Thomas, J. & Daniel, D. 2020 Turbulent exchanges between near-inertial waves and balanced flows. J. Fluid Mech. 902, A7.CrossRefGoogle Scholar
Thomas, J. & Daniel, D. 2021 Forward flux and enhanced dissipation of geostrophic balanced energy. J. Fluid Mech. 911, A60.CrossRefGoogle Scholar
Thomas, J. & Gupta, A. 2022 Wave-enhanced tracer dispersion. J. Geophys. Res. 127, e2020JC017005.CrossRefGoogle Scholar
Vallis, G.K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Vanneste, J. 2013 Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech. 45 (1), 147172.CrossRefGoogle Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4, 350363.CrossRefGoogle Scholar
Ward, M.L. & Dewar, W.K. 2010 Scattering of gravity waves by potential vorticity in a shallow-water fluid. J. Fluid Mech. 663, 478506.CrossRefGoogle Scholar
Warn, T. 1986 Statistical mechanical equilibria of the shallow water equations. Tellus A 38A, 111.CrossRefGoogle Scholar
Xia, H., Francois, N., Punzmann, H. & Shats, M. 2019 Tunable diffusion in wave-driven two-dimensional turbulence. J. Fluid Mech. 865, 811830.CrossRefGoogle Scholar
Yeung, P.K. & Brasseur, J.G. 1991 The response of isotropic turbulence to isotropic and anisotropic forcing at the large scales. Phys. Fluids A 3, 884897.CrossRefGoogle Scholar
Yokoyama, N. 2004 Statistics of gravity waves obtained by direct numerical simulation. J. Fluid Mech. 501, 169178.CrossRefGoogle Scholar
Yoo, J.G., Kim, S.Y. & Kim, H.S. 2018 Spectral descriptions of submesoscale surface circulation in a coastal region. J. Geophys. Res. 123, 42244249.CrossRefGoogle Scholar
Yuan, L. & Hamilton, K. 1994 Equilibrium dynamics in a forced-dissipative $f$-plane shallow-water system. J. Fluid Mech. 280, 369394.CrossRefGoogle Scholar
Zakharov, V., Dias, F. & Pushkarev, A. 2004 One-dimensional wave turbulence. Phys. Rep. 398, 1.CrossRefGoogle Scholar
Zakharov, V.E., L'vov, V.S. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence I. Springer.CrossRefGoogle Scholar
Zeitlin, V. 2018 Geophysical Fluid Dynamics: Understanding (Almost) Everything with Rotating Shallow Water Models. Oxford University Press.CrossRefGoogle Scholar
Zeitlin, V., Medvedev, S.B. & Polougonven, R. 2003 Frontal geostrophic adjustment, slow manifold and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 1. Theory. J. Fluid Mech. 481, 269290.CrossRefGoogle Scholar
Zhou, Y. 1993 Degrees of locality of energy transfer in the inertial range. Phys. Fluids A 5, 10921094.CrossRefGoogle Scholar