Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T05:12:21.713Z Has data issue: false hasContentIssue false

Turbulent transition in a channel with superhydrophobic walls: anisotropic slip and shear misalignment effects

Published online by Cambridge University Press:  08 February 2024

A. Jouin
Affiliation:
DynFluid, Ecole Nationale Supérieure des Arts et Métiers, 75013 Paris, France Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70126 Bari, Italy
S. Cherubini*
Affiliation:
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70126 Bari, Italy
J.C. Robinet
Affiliation:
DynFluid, Ecole Nationale Supérieure des Arts et Métiers, 75013 Paris, France
*
Email address for correspondence: stefania.cherubini@poliba.it

Abstract

Superhydrophobic surfaces dramatically reduce skin friction of overlying liquid flows. These surfaces are complex and numerical simulations usually rely on models to reduce this complexity. One of the simplest consists of finding an equivalent boundary condition through a homogenisation procedure, which in the case of channel flow over oriented riblets, leads to the presence of a small spanwise component in the homogenised base flow velocity. This work aims at investigating the influence of such a three-dimensionality of the base flow on stability and transition in a channel with walls covered by oriented riblets. Linear stability for this base flow is investigated: a new instability region, linked to cross-flow effects, is observed. Tollmien–Schlichting waves are also retrieved but the most unstable are three-dimensional. Transient growth is also affected as oblique streaks with non-zero streamwise wavenumber become the most amplified perturbations. When transition is induced by Tollmien–Schlichting waves, after an initial exponential growth regime, streaky structures with large spanwise wavenumber rapidly arise. Modal mechanisms appear to play a leading role in the development of these structures and a secondary stability analysis is performed to retrieve successfully some of their characteristics. The second scenario, initiated with cross-flow vortices, displays a strong influence of nonlinearities. The flow develops into large quasi-spanwise-invariant structures before breaking down to turbulence. Secondary stability on the saturated cross-flow vortices sheds light on this stage of transition. In both cases, cross-flow effects dominate the flow dynamics, suggesting the need to consider the anisotropicity of the wall condition when modelling superhydrophobic surfaces.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghdam, S.K. & Ricco, P. 2016 Laminar and turbulent flows over hydrophobic surfaces with shear-dependent slip length. Phys. Fluids 28 (3), 035109.CrossRefGoogle Scholar
Asai, M. & Nishioka, M. 1989 Origin of the peak–valley wave structure leading to wall turbulence. J. Fluid Mech. 208, 123.CrossRefGoogle Scholar
Asmolov, E.S. & Vinogradova, O.I. 2012 Effective slip boundary conditions for arbitrary one-dimensional surfaces. J. Fluid Mech. 706, 108117.CrossRefGoogle Scholar
Bazant, M.Z. & Vinogradova, O.I. 2008 Tensorial hydrodynamic slip. J. Fluid Mech. 613, 125134.CrossRefGoogle Scholar
Belyaev, A.V. & Vinogradova, O.I. 2010 Effective slip in pressure-driven flow past super-hydrophobic stripes. J. Fluid Mech. 652, 489499.CrossRefGoogle Scholar
Bernardini, M., García Cartagena, E.J., Mohammadi, A., Smits, A.J. & Leonardi, S. 2021 Turbulent drag reduction over liquid-infused textured surfaces: effect of the interface dynamics. J. Turbul. 22 (11), 681712.CrossRefGoogle Scholar
Bippes, H. 1990 Instability features appearing on swept wing configurations. In Laminar-Turbulent Transition (ed. D. Arnal & R. Michel), International Union of Theoretical and Applied Mechanics, pp. 419–430. Springer.CrossRefGoogle Scholar
Bippes, H. 1999 Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Prog. Aerosp. Sci. 35 (4), 363412.CrossRefGoogle Scholar
Bonfigli, G. & Kloker, M. 2007 Secondary instability of crossflow vortices: validation of the stability theory by direct numerical simulation. J. Fluid Mech. 583, 229272.CrossRefGoogle Scholar
Bottaro, A. 2019 Flow over natural or engineered surfaces: an adjoint homogenization perspective. J. Fluid Mech. 877, P1.CrossRefGoogle Scholar
Bottaro, A. & Naqvi, S. 2020 Effective boundary conditions at a rough wall: a high-order homogenization approach. Meccanica 55, 17811800.CrossRefGoogle Scholar
Brandt, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids) 47, 8096.CrossRefGoogle Scholar
Breuer, K.S. & Kuraishi, T. 1994 Transient growth in two- and three-dimensional boundary layers. Phys. Fluids 6 (6), 19831993.CrossRefGoogle Scholar
Busse, A. & Sandham, N.D. 2012 Influence of an anisotropic slip-length boundary condition on turbulent channel flow. Phys. Fluids 24 (5), 055111.CrossRefGoogle Scholar
Butler, K.M. & Farrell, B.F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A: Fluid Dyn. 4 (8), 16371650.CrossRefGoogle Scholar
Chai, C. & Song, B. 2019 Stability of slip channel flow revisited. Phys. Fluids 31 (8), 084105.CrossRefGoogle Scholar
Cherubini, S., Picella, F. & Robinet, J.-C. 2021 Variational nonlinear optimization in fluid dynamics: the case of a channel flow with superhydrophobic walls. Mathematics 9 (1), 53.Google Scholar
Choi, C., Westin, K.J.A. & Breuer, K.S. 2003 Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15 (10), 28972902.CrossRefGoogle Scholar
Choi, C.-H. & Kim, C.-J. 2006 Large slip of aqueous liquid flow over a nano-engineered superhydrophobic surface. Phys. Rev. Lett. 96 (6), 066001.CrossRefGoogle Scholar
Corbett, P. & Bottaro, A. 2001 Optimal linear growth in swept boundary layers. J. Fluid Mech. 435, 123.CrossRefGoogle Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.CrossRefGoogle Scholar
El-Hady, N.M. 1989 Evolution of resonant wave triads in three-dimensional boundary layers. Phys. Fluids A: Fluid Dyn. 1 (3), 549563.CrossRefGoogle Scholar
Farano, M., Cherubini, S., Robinet, J.-C. & De Palma, P. 2016 Subcritical transition scenarios via linear and nonlinear localized optimal perturbations in plane Poiseuille flow. Fluid Dyn. Res. 48 (6), 061409.CrossRefGoogle Scholar
Fischer, T.M. & Dallmann, U. 1991 Primary and secondary stability analysis of a three-dimensional boundary-layer flow. Phys. Fluids A: Fluid Dyn. 3 (10), 23782391.CrossRefGoogle Scholar
Gogte, S., Vorobieff, P., Truesdell, R., Mammoli, A., van Swol, F., Shah, P. & Brinker, C.J. 2005 Effective slip on textured superhydrophobic surfaces. Phys. Fluids 17 (5), 051701.CrossRefGoogle Scholar
Groot, K., Serpieri, J., Pinna, F. & Kotsonis, M. 2018 Secondary crossflow instability through global analysis of measured base flows. J. Fluid Mech. 846, 605653.CrossRefGoogle Scholar
Guegan, A., Huerre, P. & Schmid, P.J. 2007 Optimal disturbances in swept Hiemenz flow. J. Fluid Mech. 578, 223232.CrossRefGoogle Scholar
Gustavsson, L.H. 1991 Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.CrossRefGoogle Scholar
Herbert, T. 1983 Secondary instability of plane channel flow to subharmonic three-dimensional disturbances. Phys. Fluids 26 (4), 871874.CrossRefGoogle Scholar
Herbert, T. 1985 Secondary instability of plane shear flows – theory and application. In Laminar-Turbulent Transition (ed. V.V. Kozlov), International Union of Theoretical and Applied Mechanics, pp. 9–20. Springer.CrossRefGoogle Scholar
Ibrahim, J.I., Gómez-de Segura, G., Chung, D. & García-Mayoral, R. 2021 The smooth-wall-like behaviour of turbulence over drag-altering surfaces: a unifying virtual-origin framework. J. Fluid Mech. 915, A56.CrossRefGoogle Scholar
Janke, E. & Balakumar, P. 2000 On the secondary instability of three-dimensional boundary layers. Theor. Comput. Fluid Dyn. 14 (3), 167194.CrossRefGoogle Scholar
Kamrin, K., Bazant, M.Z. & Stone, H.A. 2010 Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. J. Fluid Mech. 658, 409437.CrossRefGoogle Scholar
Kawakami, M., Kohama, Y. & Okutsu, M. 1999 Stability characteristics of stationary crossflow vortices in three-dimensional boundary layer. In 37th Aerospace Sciences Meeting and Exhibit. AIAA.CrossRefGoogle Scholar
Koch, W. 2002 On the spatio-temporal stability of primary and secondary crossflow vortices in a three-dimensional boundary layer. J. Fluid Mech. 456 (1), 85111.CrossRefGoogle Scholar
Koch, W., Bertolotti, F.P., Stolte, A. & Hein, S. 2000 Nonlinear equilibrium solutions in a three-dimensional boundary layer and their secondary instability. J. Fluid Mech. 406 (1), 131174.CrossRefGoogle Scholar
Landahl, M.T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 (2), 243251.CrossRefGoogle Scholar
Lauga, E. & Cossu, C. 2005 A note on the stability of slip channel flows. Phys. Fluids 17 (8), 088106.CrossRefGoogle Scholar
Lauga, E. & Stone, H.A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.CrossRefGoogle Scholar
Lee, C. & Kim, C.-J. 2009 Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25 (21), 1281212818.CrossRefGoogle ScholarPubMed
Lingwood, R.J. 1995 Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech. 299, 1733.CrossRefGoogle Scholar
Liu, Y., Zaki, T. & Durbin, P. 2008 Floquet analysis of secondary instability of boundary layers distorted by Klebanoff streaks and Tollmien–Schlichting waves. Phys. Fluids 20 (12), 124102.CrossRefGoogle Scholar
Loiseau, J.-C. 2014 Dynamics and global stability analysis of three-dimensional flows. PhD thesis, ENSAM.Google Scholar
Luchini, P. 2013 Linearized no-slip boundary conditions at a rough surface. J. Fluid Mech. 737, 349367.CrossRefGoogle Scholar
Mack, L.M. 1984 Boundary-layer linear stability theory, AGARD Report no. 709, part 3, p. 151.Google Scholar
Malik, M.R., Li, F. & Chang, C.-L. 1994 Crossflow disturbances in three-dimensional boundary layers: nonlinear development, wave interaction and secondary instability. J. Fluid Mech. 268, 136.CrossRefGoogle Scholar
Malik, M.R., Li, F., Choudhari, M. & Chang, C.-L. 1999 Secondary instability of crossflow vortices and swept-wing boundary-layer transition. J. Fluid Mech. 399, 85115.CrossRefGoogle Scholar
Martell, M.B., Perot, J.B. & Rothstein, J.P. 2009 Direct numerical simulations of turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 620, 3141.CrossRefGoogle Scholar
Martell, M.B., Rothstein, J.P. & Perot, J.B. 2010 An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation. Phys. Fluids 22 (6), 065102.CrossRefGoogle Scholar
Messing, R. & Kloker, M. 2004 DNS study of discrete suction in a 3-D boundary layer. In Recent Results in Laminar-Turbulent Transition, pp. 177–188. Springer.CrossRefGoogle Scholar
Min, T. & Kim, J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16 (7), L55L58.CrossRefGoogle Scholar
Min, T. & Kim, J. 2005 Effects of hydrophobic surface on stability and transition. Phys. Fluids 17 (10), 108106.CrossRefGoogle Scholar
Nek5000 Version 19.0 2019 Argonne National Laboratory, Argonne, Illinois. https://nek5000.mcs.anl.gov.Google Scholar
Ou, J., Perot, B. & Rothstein, J.P. 2004 Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 16 (12), 46354643.CrossRefGoogle Scholar
Park, H., Park, H. & Kim, J. 2013 A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys. Fluids 25 (11), 110815.CrossRefGoogle Scholar
Philip, J.R. 1972 Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 23 (3), 353372.CrossRefGoogle Scholar
Picella, F. 2019 Retarder la transition vers la turbulence en imitant les feuilles de lotus. PhD thesis, ENSAM.Google Scholar
Picella, F., Robinet, J.-C. & Cherubini, S. 2019 Laminar–turbulent transition in channel flow with superhydrophobic surfaces modelled as a partial slip wall. J. Fluid Mech. 881, 462497.CrossRefGoogle Scholar
Picella, F., Robinet, J.-C. & Cherubini, S. 2020 On the influence of the modelling of superhydrophobic surfaces on laminar–turbulent transition. J. Fluid Mech. 901, A15.CrossRefGoogle Scholar
Pralits, J., Alinovi, E. & Bottaro, A. 2017 Stability of the flow in a plane microchannel with one or two superhydrophobic walls. Phys. Rev. Fluids 2, 013901.CrossRefGoogle Scholar
Reddy, S.C. & Henningson, D.S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.CrossRefGoogle Scholar
Rothstein, J.P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42 (1), 89109.CrossRefGoogle Scholar
Saric, W.S., Reed, H.L. & White, E.B. 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35 (1), 413440.CrossRefGoogle Scholar
Sarkar, K. & Prosperetti, A. 1996 Effective boundary conditions for Stokes flow over a rough surface. J. Fluid Mech. 316, 223240.CrossRefGoogle Scholar
Schmid, P.J. & Brandt, L. 2014 Analysis of fluid systems: stability, receptivity, sensitivity. Appl. Mech. Rev. 66 (2), 024803.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and Transition in Shear Flows. Applied Mathematical Sciences. Springer.CrossRefGoogle Scholar
Seo, J., García-Mayoral, R. & Mani, A. 2018 Turbulent flows over superhydrophobic surfaces: flow-induced capillary waves, and robustness of air–water interfaces. J. Fluid Mech. 835, 4585.CrossRefGoogle Scholar
Serpieri, J. 2018 Cross-flow instability. PhD thesis, Delft University of Technology.Google Scholar
Serpieri, J. & Kotsonis, M. 2016 Three-dimensional organisation of primary and secondary crossflow instability. J. Fluid Mech. 799, 200245.CrossRefGoogle Scholar
Steinberger, A., Cottin-Bizonne, C., Kleimann, P. & Charlaix, E. 2007 High friction on a bubble mattress. Nat. Mater. 6 (9), 665668.CrossRefGoogle ScholarPubMed
Sudhakar, Y., Lācis, U., Pasche, S. & Bagheri, S. 2021 Higher order homogenized boundary conditions forflows over rough and porous surfaces. Transp. Porous Med. 136, 142.CrossRefGoogle Scholar
Sundin, J., Zaleski, S. & Bagheri, S. 2021 Roughness on liquid-infused surfaces induced by capillary waves. J. Fluid Mech. 915, R6.CrossRefGoogle Scholar
Tatsumi, T. & Yoshimura, T. 1990 Stability of the laminar flow in a rectangular duct. J. Fluid Mech. 212, 437449.CrossRefGoogle Scholar
Tomlinson, S.D. & Papageorgiou, D.T. 2022 Linear instability of lid- and pressure-driven flows in channels textured with longitudinal superhydrophobic grooves. J. Fluid Mech. 932, A12.CrossRefGoogle Scholar
Trefethen, L.N. 2000 Spectral Methods in MATLAB. Software, Environments and Tools. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Tretheway, D.C. & Meinhart, C.D. 2002 Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14 (3), L9L12.CrossRefGoogle Scholar
Truesdell, R., Mammoli, A., Vorobieff, P., van Swol, F. & Brinker, C.J. 2006 Drag reduction on a patterned superhydrophobic surface. Phys. Rev. Lett. 97 (4), 044504.CrossRefGoogle ScholarPubMed
Tsai, P., Peters, A.M., Pirat, C., Wessling, M., Lammertink, R.G.H. & Lohse, D. 2009 Quantifying effective slip length over micropatterned hydrophobic surfaces. Phys. Fluids 21 (11), 112002.CrossRefGoogle Scholar
Wassermann, P. & Kloker, M. 2002 Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer. J. Fluid Mech. 456, 4984.CrossRefGoogle Scholar
Wassermann, P. & Kloker, M. 2003 Transition mechanisms induced by travelling crossflow vortices in a three-dimensional boundary layer. J. Fluid Mech. 483, 6789.CrossRefGoogle Scholar
White, E.B. & Saric, W.S. 2005 Secondary instability of crossflow vortices. J. Fluid Mech. 525, 275308.CrossRefGoogle Scholar
Xiong, X. & Tao, J. 2020 Linear stability and energy stability of plane poiseuille flow with isotropic and anisotropic slip boundary conditions. Phys. Fluids 32 (9), 094104.CrossRefGoogle Scholar
Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L. 2007 Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19 (12), 123601.CrossRefGoogle Scholar
Yu, K.H., Teo, C.J. & Khoo, B.C. 2016 Linear stability of pressure-driven flow over longitudinal superhydrophobic grooves. Phys. Fluids 28 (2), 022001.CrossRefGoogle Scholar
Zang, T.A. & Krist, S.E. 1989 Numerical experiments on stability and transition in plane channel flow. Theor. Comput. Fluid Dyn. 1 (1), 4164.CrossRefGoogle Scholar
Zhai, X., Chen, K. & Song, B. 2023 Linear instability of channel flow with microgroove-type anisotropic superhydrophobic walls. Phys. Rev. Fluids 8, 023901.CrossRefGoogle Scholar
Zhang, J., Tian, H., Yao, Z., Hao, P. & Jiang, N. 2015 Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow. Exp. Fluids 56 (9), 179.CrossRefGoogle Scholar
Zhang, J., Yao, Z. & Hao, P. 2016 Drag reductions and the air–water interface stability of superhydrophobic surfaces in rectangular channel flow. Phys. Rev. E 94 (5), 053117.CrossRefGoogle ScholarPubMed