Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-07T06:06:55.787Z Has data issue: false hasContentIssue false

Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow

Published online by Cambridge University Press:  25 November 2008

A. INAGAKI
Affiliation:
Department of International Development Engineering, Tokyo Institute of Technology, Tokyo, Japaninagaki.a.ab@m.titech.ac.jp
M. KANDA
Affiliation:
Department of International Development Engineering, Tokyo Institute of Technology, Tokyo, Japaninagaki.a.ab@m.titech.ac.jp

Abstract

The main objective of this study is to examine the robustness of the inner-layer scaling similarity of near-wall turbulence. The turbulent boundary layer of interest is over a very rough surface with a very high Reynolds number and significant outer-layer disturbances. This is not consistent with the canonical turbulent flows studied in laboratories, but it is common in urban areas. The investigation was conducted using the comprehensive outdoor scale model (COSMO) facility. COSMO is composed of a regular array of 1.5 m concrete cubes on a 50×100 m2 flat concrete base. This unique facility allows us to obtain the turbulent dataset within the vertical constant stress region under near-neutral stratification at high Reynolds numbers. The turbulent spectra and the standard deviation of velocity fluctuations from COSMO were compared with the values obtained over rural and urban surfaces, and in wind-tunnel experiments.

The results confirmed that the inner-layer scaling similarity was robust for the wall-normal fluctuations and the Reynolds stress, independent of the roughness types and the outer-layer conditions. The inner-layer scaling similarity failed for the horizontal velocity fluctuations owing to the influence of the outer-layer disturbance. The relative importance of outer-layer turbulence to inner-layer-scale eddies in the horizontal velocity fluctuations was successfully quantified in terms of the roughness scale normalized by the outer-layer scale.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akinlade, O. G., Bergstrom, D. J., Tachie, M. F. & Castillo, L. 2004 Outer flow scaling of smooth and rough wall turbulent boundary layer. Exps. Fluids 37, 604612.CrossRefGoogle Scholar
Bradshaw, P. 1967 a The turbulence structure of equilibrium boundary layers. J. Fluid Mech. 29, 625645.Google Scholar
Bradshaw, P. 1967 b Inactive motions and pressure fluctuations in turbulent boundary layers. J. Fluid Mech. 30, 241258.Google Scholar
Cheng, H. & Castro, I. P. 2002 Near wall flow over urban-like roughness. Boundary-Layer Met. 104, 229259.CrossRefGoogle Scholar
Christen, A. 2005 Atmospheric turbulence and surface energy exchange in urban environments. PhD thesis, University of Basel.Google Scholar
Clarke, J. F., Ching, J. K. S. & Godowitch, J. M. 1982 An experimental study of turbulence in an urban environment. Tech. Rep. USEPA, Research Triangle Park, NC. NMS PB 226085.Google Scholar
Coceal, O., Thomas, T. G., Castro, I. P. & Belcher, S. E. 2006 Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Met. 121, 491519.CrossRefGoogle Scholar
Cui, J., Patel, V. V. & Lin, C. L. 2003 Large-eddy simulation of turbulent flow in a channel with rib roughness. Intl J. Heat Fluid Flow 24, 372388.Google Scholar
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.Google Scholar
Guala, M., Hommema, S. F. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521541.CrossRefGoogle Scholar
Hanna, S. R., Tehranian, S., Carissimo, B., MacDonald, R. W. & Lohner, R. 2002 Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmos. Environ. 36, 50675079.CrossRefGoogle Scholar
Högström, U. 1990 Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J. Atmos. Sci. 47, 19491972.Google Scholar
Högström, U., Bergström, H. & Alexandersson, H. 1982 Turbulence characteristics in a near neutrally stratified urban atmosphere. Boundary-Layer Met. 23, 449472.Google Scholar
Jimenez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
Kaimal, J. C. & Finnigan, J. J. 1994 Atmospheric Boundary Layer Flows. Oxford University Press.CrossRefGoogle Scholar
Kaimal, J. C., Wyngaard, J. C., Izumi, Y. & Cote, O. R. 1972 Spectral characteristics of surface layer turbulence. Q. J. R. Met. Soc. 98, 563589.Google Scholar
Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Cote, O. R. & Izumi, Y. 1976 Turbulent structure in the convective boundary layer. J. Atmos. Sci. 33, 21522169.Google Scholar
Kanda, M. 2006 Large eddy simulations on the effects of surface geometry of building arrays on turbulent organized structures. Boundary-Layer Met. 118, 151168.CrossRefGoogle Scholar
Kanda, M., Moriwaki, R. & Kasamatsu, F. 2004 Large eddy simulation of turbulent organized structure within and above explicitly resolved cubic arrays. Boundary-Layer Met. 112, 343368.CrossRefGoogle Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.Google Scholar
Krogstad, P. A., Andersson, H. I., Bakken, O. M. & Ashrafian, A. 2005 An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 530, 327352.Google Scholar
Kunkel, G. J. & Marusic, I. 2006 Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J. Fluid Mech. 548, 375402.Google Scholar
McNaughton, K. G. & Raubach, J. 1998 Unsteadiness as a cause of non-equality of eddy diffusivities for heat and vapour at the base of an advective inversion. Boundary-Layer Met. 88, 479504.Google Scholar
Miyake, Y., Tsujimoto, K. & Nakaji, M. 2001 Direct numerical simulation of rough-wall heat transfer in a turbulent channel flow. Intl J. Heat Fluid Flow 22, 237244.CrossRefGoogle Scholar
Nagano, Y., Hattori, H. & Houra, T. 2004 DNS of velocity and thermal fields in turbulent channel flow with transverse-rib roughness. Intl J. Heat Fluid Flow 25, 393403.CrossRefGoogle Scholar
Panofsky, H. A. & Dutton, J. A. 1984 Atmospheric Turbulence. John Wiley.Google Scholar
Panofsky, H. A., Tennekes, H., Lenschow, D. H. & Wyngaard, J. C. 1978 The characteristics of turbulent velocity components in the surface layer under the unstable conditions. Boundary-Layer Met. 11, 355361.CrossRefGoogle Scholar
Perry, A. E. & Abell, C. J. 1977 Asymptotic similarity of turbulence structures in smooth- and rough-walled pipes. J. Fluid Mech. 79, 785799.CrossRefGoogle Scholar
Raupach, M. R., Thom, A. S. & Edwards, I. 1980 A wind tunnel study of turbulent flow close to regularly arrayed rough surfaces. Boundary-Layer Met. 18, 373397.Google Scholar
Raupach, M. R., Coppin, P. A. & Legg, B. J. 1986 Experiments on scalar dispersion within a model plant canopy. Part I: The turbulence structure. Boundary-Layer Met. 35, 2152.Google Scholar
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 125.CrossRefGoogle Scholar
Raupach, M. R., Finnigan, J. J. & Brunet, Y. 1996 Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Met. 78, 351382.CrossRefGoogle Scholar
Rotach, M. W. 1993 Turbulence close to a rough urban surface. Part II: Variances and gradients. Boundary-Layer Met. 66, 7592.CrossRefGoogle Scholar
Rotach, M. W. 1995 Profiles of turbulence statistics and above an urban street canyon. Atmos. Environ. 29, 14731486.CrossRefGoogle Scholar
Rotach, M. W. 1999 On the influence of the urban roughness sublayer on turbulence and dispersion – spectral characteristics. Atmos. Environ. 33, 40014008.Google Scholar
Roth, M. & Oke, T. R. 1993 Turbulent transfer relationships over an urban surface. I: Spectral characteristics. Q. J. R. Met. Soc. 119, 10711104.Google Scholar
Roth, M. 1993 Turbulent transfer relationships over an urban surface. II. Integral statistics. Q. J. R. Met. Soc. 119, 11051120.Google Scholar
Roth, M. 2000 Review of atmospheric turbulence over cities. Q. J. R. Met. Soc. 126, 941990.Google Scholar
Seino, N., Yoshikado, H., Kobayashi, F., Sato, J. et al. 2003 Vertical structure of local fronts observed in Kanto, Japan. J. Met. Soc. Japan 81, 367391.Google Scholar
Stull, R. B. 1988 An Introduction to Boundary Layer Meteorology. Kluwer.Google Scholar
Thom, A. S. 1971 Momentum absorption by vegetation. Q. J. R. Met. Soc. 97, 414428.Google Scholar
Townsend, A. A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11, 97120.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Willis, D. E. & Deardorff, J. W. 1976 On the use of Taylor's translation hypothesis for diffusion in the mixed layer. Q. J. R. Met. Soc. 102, 817822.Google Scholar
Yersel, M. & Goble, R. 1986 Roughness effects on urban turbulence parameters. Boundary-Layer Met. 37, 271284.Google Scholar
Zhao, R. & Smits, A. J. 2007 Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow. J. Fluid Mech. 576, 457473.CrossRefGoogle Scholar