Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-14T10:07:36.710Z Has data issue: false hasContentIssue false

Transport of inertial spherical particles in compressible turbulent boundary layers

Published online by Cambridge University Press:  12 August 2024

Ming Yu
Affiliation:
State Key Laboratory of Aerodynamics, China Aerodynamics R&D Center, Mianyang 621000, PR China
Lihao Zhao
Affiliation:
Key Laboratory of Applied Mechanics, Ministry of Education, Institute of Fluid Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Xianxu Yuan*
Affiliation:
State Key Laboratory of Aerodynamics, China Aerodynamics R&D Center, Mianyang 621000, PR China
Chunxiao Xu*
Affiliation:
Key Laboratory of Applied Mechanics, Ministry of Education, Institute of Fluid Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
*
Email addresses for correspondence: yuanxianxu2023@163.com, xucx@tsinghua.edu.cn
Email addresses for correspondence: yuanxianxu2023@163.com, xucx@tsinghua.edu.cn

Abstract

In the present study, we perform direct numerical simulations of compressible turbulent boundary layers at free stream Mach numbers $2\unicode{x2013}6$ laden with dilute phase of spherical particles to investigate the Mach number effects on particle transport and dynamics. Most of the phenomena observed and well-recognized for inertia particles in incompressible wall-bounded turbulent flows – such as near-wall preferential accumulation and clustering beneath low-speed streaks, flatter mean velocity profiles, and trend variation of the particle velocity fluctuations – are identified in the compressible turbulent boundary layer as well. However, we find that the compressibility effects are significant for large inertia particles. As the Mach number increases, the near-wall accumulation and the small-scale clustering are alleviated, which is probably caused by the variations of the fluid density and viscosity that are crucial to particle dynamics. This can be affected by the fact that the forces acting on the particles with viscous Stokes number greater than 500 are modulated by the comparatively high particle Mach numbers in the near-wall region. This is also the reason for the abatement of the streamwise particle velocity fluctuation intensities with the Mach numbers.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armenio, V. & Fiorotto, V. 2001 The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13 (8), 24372440.CrossRefGoogle Scholar
Balachandar, S. 2009 A scaling analysis for point-particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35 (9), 801810.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Balkovsky, E., Falkovich, G. & Fouxon, A. 2001 Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86 (13), 2790.CrossRefGoogle ScholarPubMed
Baltussen, M.W., Buist, K.A., Peters, E. & Kuipers, J. 2018 Multiscale modelling of dense gas–particle flows. In Bridging Scales in Modelling and Simulation of Non-Reacting and Reacting Flows. Part II (ed. A. Parente & J. De Wilde), Advances in Chemical Engineering, vol. 53, pp. 1–52. Academic Press.CrossRefGoogle Scholar
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98 (8), 084502.CrossRefGoogle ScholarPubMed
Berk, T. & Coletti, F. 2020 Transport of inertial particles in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 903, A18.CrossRefGoogle Scholar
Bernardini, M. 2014 Reynolds number scaling of inertial particle statistics in turbulent channel flows. J. Fluid Mech. 758, R1.CrossRefGoogle Scholar
Bernardini, M., Modesti, D., Salvadore, F. & Pirozzoli, S. 2021 STREAmS: a high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows. Comput. Phys. Commun. 263, 107906.CrossRefGoogle Scholar
Bernardini, M. & Pirozzoli, S. 2011 Wall pressure fluctuations beneath supersonic turbulent boundary layers. Phys. Fluids 23 (8), 085102.CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2013 The effect of large-scale turbulent structures on particle dispersion in wall-bounded flows. Intl J. Multiphase. Flow 51, 5564.CrossRefGoogle Scholar
Bragg, A.D. & Collins, L.R. 2014 New insights from comparing statistical theories for inertial particles in turbulence: I. Spatial distribution of particles. New J. Phys. 16 (5), 055013.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54, 159189.CrossRefGoogle Scholar
Buchta, D.A., Shallcross, G. & Capecelatro, J. 2019 Sound and turbulence modulation by particles in high-speed shear flows. J. Fluid Mech. 875, 254285.CrossRefGoogle Scholar
Cao, Y.H., Wu, Z.L. & Xu, Z.Y. 2014 Effects of rainfall on aircraft aerodynamics. Prog. Aerosp. Sci. 71, 85127.CrossRefGoogle Scholar
Capecelatro, J. & Wagner, J.L. 2024 Gas–particle dynamics in high-speed flows. Annu. Rev. Fluid Mech. 56, 379403.CrossRefGoogle Scholar
Casciola, C.M., Gualtieri, P., Jacob, B. & Piva, R. 2007 The residual anisotropy at small scales in high shear turbulence. Phys. Fluids 19 (10), 101704.CrossRefGoogle Scholar
Cheng, X.L., Zeng, Q.C. & Hu, F. 2012 Stochastic modeling the effect of wind gust on dust entrainment during sand storm. Chin. Sci. Bull. 57, 35953602.CrossRefGoogle Scholar
Clift, R. & Gauvin, W.H. 1971 Motion of entrained particles in gas streams. Can. J. Chem. Engng 49 (4), 439448.CrossRefGoogle Scholar
Cogo, M., Salvadore, F., Picano, F. & Bernardini, M. 2022 Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate–high Reynolds numbers and isothermal wall condition. J. Fluid Mech. 945, A30.CrossRefGoogle Scholar
Crowe, C.T., Troutt, T.R. & Chung, J.N. 1996 Numerical models for two-phase turbulent flows. Annu. Rev. Fluid Mech. 28 (1), 1143.CrossRefGoogle Scholar
Cui, Z.W., Huang, W.X., Xu, C.X., Andersson, H.I. & Zhao, L.H. 2021 Alignment of slender fibers and thin disks induced by coherent structures of wall turbulence. Intl J. Multiphase Flow 145, 103837.CrossRefGoogle Scholar
Cui, Z.W. & Zhao, L.H. 2022 Shape-dependent regions for inertialess spheroids in turbulent channel flow. Phys. Fluids 34 (12), 123316.CrossRefGoogle Scholar
Dai, Q., Jin, T., Luo, K. & Fan, J.R. 2018 Direct numerical simulation of particle dispersion in a three-dimensional spatially developing compressible mixing layer. Phys. Fluids 30 (11), 113301.CrossRefGoogle Scholar
Dai, Q., Jin, T., Luo, K., Xiao, W. & Fan, J.R. 2019 Direct numerical simulation of a three-dimensional spatially evolving compressible mixing layer laden with particles. II. Turbulence anisotropy and growth rate. Phys. Fluids 31 (8), 083303.CrossRefGoogle Scholar
Dai, Q., Luo, K., Jin, T. & Fan, J.R. 2017 Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence. J. Fluid Mech. 832, 438482.CrossRefGoogle Scholar
Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C. & Poinsot, T. 1999 Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152 (2), 517549.CrossRefGoogle Scholar
Eaton, J.K. 2009 Two-way coupled turbulence simulations of gas–particle flows using point-particle tracking. Intl J. Multiphase Flow 35 (9), 792800.CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J.R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309329.CrossRefGoogle Scholar
Feng, Y., Luo, S., Song, J. & Xu, D. 2023 b Numerical investigation on flow and mixing characteristics of powder fuel under strong shear and shock wave interaction. Energy 263, 126061.CrossRefGoogle Scholar
Feng, Y.B., Luo, S.B., Song, J.W., Xia, K.X. & Xu, D.Q. 2023 a Numerical investigation on the combustion characteristics of aluminum powder fuel in a supersonic cavity-based combustor. Appl. Therm. Engng 221, 119842.CrossRefGoogle Scholar
Ferry, J. & Balachandar, S. 2001 A fast Eulerian method for disperse two-phase flow. Intl J. Multiphase Flow 27 (7), 11991226.CrossRefGoogle Scholar
Ferry, J. & Balachandar, S. 2002 Equilibrium expansion for the Eulerian velocity of small particles. Powder Technol. 125 (2–3), 131139.CrossRefGoogle Scholar
Fessler, J.R., Kulick, J.D. & Eaton, J.K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6 (11), 37423749.CrossRefGoogle Scholar
Fong, K.O., Amili, O. & Coletti, F. 2019 Velocity and spatial distribution of inertial particles in a turbulent channel flow. J. Fluid Mech. 872, 367406.CrossRefGoogle Scholar
Gao, W., Samtaney, R. & Richter, D.H. 2023 Direct numerical simulation of particle-laden flow in an open channel at $Re_\tau =5186$. J. Fluid Mech. 957, A3.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2008 Sweep-stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett. 100 (5), 054503.CrossRefGoogle ScholarPubMed
Gualtieri, P., Picano, F. & Casciola, C.M. 2009 Anisotropic clustering of inertial particles in homogeneous shear flow. J. Fluid Mech. 629, 2539.CrossRefGoogle Scholar
Hwang, Y. 2013 Near-wall turbulent fluctuations in the absence of wide outer motions. J. Fluid Mech. 723, 264288.CrossRefGoogle Scholar
Jie, Y., Andersson, H.I. & Zhao, L.H. 2021 Effects of the quiescent core in turbulent channel flow on transport and clustering of inertial particles. Intl J. Multiphase Flow 140, 103627.CrossRefGoogle Scholar
Jie, Y.C., Cui, Z.W., Xu, C.X. & Zhao, L.H. 2022 On the existence and formation of multi-scale particle streaks in turbulent channel flows. J. Fluid Mech. 935, A18.CrossRefGoogle Scholar
Jiménez, J. 2013 Near-wall turbulence. Phys. Fluids 25 (10), 101302.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Kennedy, C.A. & Gruber, A. 2008 Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227 (3), 16761700.CrossRefGoogle Scholar
Klein, M., Sadiki, A. & Janicka, J. 2003 A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186 (2), 652665.CrossRefGoogle Scholar
Kuerten, M.J.G. 2016 Point-particle DNS and LES of particle-laden turbulent flow – a state-of-the-art review. Flow Turbul. Combust. 97, 689713.CrossRefGoogle Scholar
Kulick, J.D., Fessler, J.R. & Eaton, J.K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109134.CrossRefGoogle Scholar
Kwon, Y.S., Philip, J., De Silva, C.M., Hutchins, N. & Monty, J.P. 2014 The quiescent core of turbulent channel flow. J. Fluid Mech. 751, 228254.CrossRefGoogle Scholar
Li, T., Cui, Z.W., Yuan, X.X., Zhang, Y., Zhou, Q. & Zhao, L.H. 2023 Particle dynamics in compressible turbulent vertical channel flows. Phys. Fluids 35 (8), 083332.Google Scholar
Li, Z.Z., Wei, J.J. & Yu, B. 2016 Direct numerical study on effect of interparticle collision in particle-laden turbulence. AIAA J. 54 (10), 32123222.CrossRefGoogle Scholar
Liu, H.Y. & Zheng, X.J. 2021 Large-scale structures of wall-bounded turbulence in single- and two-phase flows: advancing understanding of the atmospheric surface layer during sandstorms. Flow 1, E5.CrossRefGoogle Scholar
Loth, E., Tyler Daspit, J., Jeong, M., Nagata, T. & Nonomura, T. 2021 Supersonic and hypersonic drag coefficients for a sphere. AIAA J. 59 (8), 32613274.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Marchioli, C., Soldati, A., Kuerten, J.G.M., Arcen, B., Taniere, A., Goldensoph, G., Squires, K.D., Cargnelutti, M.F. & Portela, L.M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34 (9), 879893.CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.CrossRefGoogle Scholar
Milici, B. & de Marchis, M. 2016 Statistics of inertial particle deviation from fluid particle trajectories in horizontal rough wall turbulent channel flow. Intl J. Heat Fluid Flow 60, 111.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22 (10), 103304.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.CrossRefGoogle Scholar
Mortimer, L.F. & Fairweather, M. 2020 Density ratio effects on the topology of coherent turbulent structures in two-way coupled particle-laden channel flows. Phys. Fluids 32 (10), 103302.CrossRefGoogle Scholar
Mortimer, L.F., Njobuenwu, D.O. & Fairweather, M. 2019 Near-wall dynamics of inertial particles in dilute turbulent channel flows. Phys. Fluids 31 (6), 063302.CrossRefGoogle Scholar
Motoori, Y., Wong, C. & Goto, S. 2022 Role of the hierarchy of coherent structures in the transport of heavy small particles in turbulent channel flow. J. Fluid Mech. 942, A3.CrossRefGoogle Scholar
Musker, A. 1979 Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA J. 17 (6), 655657.CrossRefGoogle Scholar
Narayanan, C., Lakehal, D., Botto, L. & Soldati, A. 2003 Mechanisms of particle deposition in a fully developed turbulent open channel flow. Phys. Fluids 15 (3), 763775.CrossRefGoogle Scholar
Picano, F., Sardina, G. & Casciola, C.M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21 (9), 093305.CrossRefGoogle Scholar
Picciotto, M., Marchioli, C., Reeks, M.W. & Soldati, A. 2005 a Statistics of velocity and preferential accumulation of micro-particles in boundary layer turbulence. Nucl. Engng Des. 235 (10–12), 12391249.CrossRefGoogle Scholar
Picciotto, M., Marchioli, C. & Soldati, A. 2005 b Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Phys. Fluids 17 (9), 098101.CrossRefGoogle Scholar
Pirozzoli, S. 2010 Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229 (19), 71807190.CrossRefGoogle Scholar
Pirozzoli, S. 2011 Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163194.CrossRefGoogle Scholar
Pumir, A. & Wilkinson, M. 2016 Collisional aggregation due to turbulence. Annu. Rev. Condens. Matt. Phys. 7, 141170.CrossRefGoogle Scholar
Rashidi, M., Hetsroni, G. & Banerjee, S. 1990 Particle–turbulence interaction in a boundary layer. Intl J. Multiphase Flow 16 (6), 935949.CrossRefGoogle Scholar
Rouson, D. & Eaton, J.K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.CrossRefGoogle Scholar
Rudinger, G. 2012 Fundamentals of Gas–Particle Flow, vol. 2. Elsevier.Google Scholar
Salazar, J., de Jong, J., Cao, L., Woodward, S.H., Meng, H. & Collins, L. 2008 Experimental and numerical investigation of inertial particle clustering in isotropic turbulence. J. Fluid Mech. 600, 245256.CrossRefGoogle Scholar
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C.M. 2012 Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.CrossRefGoogle Scholar
Saw, E.W., Shaw, R.A., Ayyalasomayajula, S., Chuang, P.Y. & Gylfason, A. 2008 Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett. 100 (21), 214501.CrossRefGoogle ScholarPubMed
Shu, C.W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (2), 439471.CrossRefGoogle Scholar
Soldati, A. 2005 Particles turbulence interactions in boundary layers. Z. Angew. Math. Mech. 85 (10), 683699.CrossRefGoogle Scholar
Soldati, A. & Marchioli, C. 2009 Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Intl J. Multiphase Flow 35 (9), 827839.CrossRefGoogle Scholar
Tardu, S. 1995 Characteristics of single and clusters of bursting events in the inner layer. Exp. Fluids 20 (2), 112124.Google Scholar
Vinkovic, I., Doppler, D., Lelouvetel, J. & Buffat, M. 2011 Direct numerical simulation of particle interaction with ejections in turbulent channel flows. Intl J. Multiphase Flow 37 (2), 187197.CrossRefGoogle Scholar
Wang, L.P. & Maxey, M.R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
Wang, X., Wan, M. & Biferale, L. 2022 Acceleration statistics of tracer and light particles in compressible homogeneous isotropic turbulence. J. Fluid Mech. 935, A36.CrossRefGoogle Scholar
Wang, Y.S., Huang, W.X. & Xu, C.X. 2015 On hairpin vortex generation from near-wall streamwise vortices. Acta Mechanica Sin. 31, 139152.CrossRefGoogle Scholar
Wray, A. 1990 Minimal storage time advancement schemes for spectral methods. Report no. MS 202. NASA Ames Research Center, California.Google Scholar
Xiao, W., Jin, T., Luo, K., Dai, Q. & Fan, J.R. 2020 Eulerian–Lagrangian direct numerical simulation of preferential accumulation of inertial particles in a compressible turbulent boundary layer. J. Fluid Mech. 903, A19.CrossRefGoogle Scholar
Yang, Y., Wang, J., Shi, Y., Xiao, Z., He, X.T. & Chen, S.Y. 2014 Interactions between inertial particles and shocklets in compressible turbulent flow. Phys. Fluids 26 (9), 091702.CrossRefGoogle Scholar
Yu, M. & Xu, C.X. 2021 Compressibility effects on hypersonic turbulent channel flow with cold walls. Phys. Fluids 33 (7), 075106.CrossRefGoogle Scholar
Yu, M., Xu, C.X. & Pirozzoli, S. 2019 Genuine compressibility effects in wall-bounded turbulence. Phys. Rev. Fluids 4 (12), 123402.CrossRefGoogle Scholar
Yu, Z.S., Lin, Z.W., Shao, X.M. & Wang, L.P. 2017 Effects of particle–fluid density ratio on the interactions between the turbulent channel flow and finite-size particles. Phys. Rev. E 96 (3), 033102.CrossRefGoogle ScholarPubMed
Zhang, Q.Q., Liu, H., Ma, Z.Q. & Xiao, Z.L. 2016 Preferential concentration of heavy particles in compressible isotropic turbulence. Phys. Fluids 28 (5), 055104.CrossRefGoogle Scholar
Zhang, Y., Bi, W., Hussain, F. & She, Z. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.CrossRefGoogle Scholar
Zhao, L.H., Marchioli, C. & Andersson, H.I. 2012 Stokes number effects on particle slip velocity in wall-bounded turbulence and implications for dispersion models. Phys. Fluids 24 (2), 021705.CrossRefGoogle Scholar