Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-19T10:27:41.754Z Has data issue: false hasContentIssue false

A time-domain analysis of the large-scale flow structure in a circular jet. Part 1. Moderate Reynolds number

Published online by Cambridge University Press:  12 April 2006

H. H. Bruun
Affiliation:
Engineering Laboratory, University of Cambridge

Abstract

This paper presents a new experimental time-domain technique for the evaluation of the large-scale structure in a turbulent flow. The technique is demonstrated by hot-wire anemometry for a circular jet flow at a moderate Reynolds number of 104, and the large-scale structure identified is compared successfully with smoke flow-visualization observations. The temporal and spatial relationships of the separate large-scale flow events have been derived, and this information enabled the evaluation of the nonlinear spatial development of the large-scale flow structure.

Type
Research Article
Copyright
© 1977 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, H. A. & Massaro, T. A. 1968 Vortex evolution in a round jet. J. Fluid Mech. 31, 435448.Google Scholar
Bradshaw, P., Ferriss, D. H. & Johnson, R. F. 1964 Turbulence in the noise-producing region of a circular jet. J. Fluid Mech. 19, 591624.Google Scholar
Bruun, H. H. 1971 Linearization and hot-wire anemometry. J. Sci. Instr. 4, 815820.Google Scholar
Bruun, H. H. 1975 On the temperature dependence of constant temperature hot-wire probes with small wire aspect ratio. J. Sci. Instr. 8, 942951.Google Scholar
Bruun, H. H. 1976 A digital comparison of linear and non-linear hot-wire data evaluation. J. Sci. Instr. 9, 5357.Google Scholar
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.Google Scholar
Davies, P. O. A. L. 1974 The ISVR constant temperature hot-wire anemometer. Southampton Univ. ISVR Rep. no. 66.Google Scholar
Davies, P. O. A. L., Fisher, M. J. & Barratt, M. J. 1963 The characteristics of turbulence in the mixing region of a round jet. J. Fluid Mech. 15, 337367.Google Scholar
Freymuth, P. 1966 On transition in a separated laminar boundary layer. J. Fluid Mech. 25, 683704.Google Scholar
Ko, N. W. M. & Davies, P. O. A. L. 1971 The near field within the potential cone of subsonic cold jets. J. Fluid Mech. 50, 4978.Google Scholar
Ko, N. W. M. & Davies, P. O. A. L. 1975 Some covariance measurements in a subsonic jet. J. Sound Vib. 41, 347358.Google Scholar
Lau, J. C. & Fisher, M. J. 1975 The vortex-street structure of ‘turbulent’ jets. Part 1. J. Fluid Mech. 67, 299337.Google Scholar
Lau, J. C., Fisher, M. J. & Fuchs, H. V. 1972 The intrinsic structure of turbulent jets. J. Sound Vib. 22, 379406.Google Scholar
Wehrmann, O. & Wille, R. 1958 Beitrag zur Phänomenologie des laminar-turbulenten Übergangs im Freistrahl bei kleinen Reynolds-Zahlen. Boundary-Layer Res. In Boundary-Layer Research (ed. H. Görtler), pp. 387403. Springer.
Wille, R. 1963 Beiträge zur Phänomenologie der Freistrahlen. Z. Flugwiss. 6, 222232.Google Scholar