Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T04:05:22.195Z Has data issue: false hasContentIssue false

Stable and unstable supersonic stagnation of an axisymmetric rotating magnetized plasma

Published online by Cambridge University Press:  15 February 2022

Andrey Beresnyak*
Affiliation:
Plasma Physics Division, US Naval Research Laboratory, Washington, DC 20375, USA
Alexander L. Velikovich
Affiliation:
Plasma Physics Division, US Naval Research Laboratory, Washington, DC 20375, USA
John L. Giuliani
Affiliation:
Plasma Physics Division, US Naval Research Laboratory, Washington, DC 20375, USA Emeritus
Arati Dasgupta
Affiliation:
Plasma Physics Division, US Naval Research Laboratory, Washington, DC 20375, USA
*
Email address for correspondence: andrey.beresnyak@nrl.navy.mil

Abstract

The Naval Research Laboratory ‘Mag Noh problem’, described in this paper, is a self-similar magnetized implosion flow, which contains a fast magnetohydrodynamic (MHD) outward propagating shock of constant velocity. We generalize the classic Noh (OSTI Tech. Rep. 577058, 1983) problem to include azimuthal and axial magnetic fields as well as rotation. Our family of ideal MHD solutions is five parametric, each solution having its own self-similarity index, gas gamma, magnetization, the ratio of axial to the azimuthal field and rotation. While the classic Noh problem must have a supersonic implosion velocity to create a shock, our solutions have an interesting three-parametric special case with zero initial velocity in which magnetic tension, instead of implosion flow, creates the shock at $t=0+$. Our self-similar solutions are indeed realized when we solve the initial value MHD problem with the finite volume MHD code Athena. We numerically investigated the stability of these solutions and found both stable and unstable regions in parameter space. Stable solutions can be used to test the accuracy of numerical codes. Unstable solutions have also been widely used to test how codes reproduce linear growth, transition to turbulence and the practically important effects of mixing. Now we offer a family of unstable solutions featuring all three elements relevant to magnetically driven implosions: convergent flow, magnetic field and a shock wave.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ampleford, D.J., et al. 2014 Contrasting physics in wire array z pinch sources of 1–20 keV emission on the Z facility. Phys. Plasmas 21 (5), 056708.CrossRefGoogle Scholar
Athena++ development team 2021 PrincetonUniversity/athena-public-version: Athena++ v21.0.Google Scholar
Barcilon, A., Book, D.L. & Cooper, A.L. 1974 Hydrodynamic stability of a rotating liner. Phys. Fluids 17 (9), 17071718.CrossRefGoogle Scholar
Basko, M.M., Sasorov, P.V., Murakami, M., Novikov, V.G. & Grushin, A.S. 2012 One-dimensional study of the radiation-dominated implosion of a cylindrical tungsten plasma column. Plasma Phys. Control. Fusion 54 (5), 055003.CrossRefGoogle Scholar
Book, D.L. & Turchi, P.J. 1979 Dynamics of rotationally stabilized implosions of compressible cylindrical liquid shells. Phys. Fluids 22 (1), 6878.CrossRefGoogle Scholar
Book, D.L. & Winsor, N.K. 1974 Rotational stabilization of a metallic liner. Phys. Fluids 17 (3), 662663.CrossRefGoogle Scholar
Bott, S.C., et al. 2009 Study of the effect of current rise time on the formation of the precursor column in cylindrical wire array z pinches at 1 MA. Phys. Plasmas 16 (7), 072701.CrossRefGoogle Scholar
Conti, F., Aybar, N., Narkis, J., Valenzuela, J.C., Rahman, H.U., Ruskov, E., Dutra, E., Haque, S., Covington, A. & Beg, F.N. 2020 Study of stability in a liner-on-target gas puff z-pinch as a function of pre-embedded axial magnetic field. Phys. Plasmas 27 (1), 012702.CrossRefGoogle Scholar
Coverdale, C.A., et al. 2007 Deuterium gas-puff Z-pinch implosions on the Z accelerator. Phys. Plasmas 14 (5), 056309.CrossRefGoogle Scholar
Cuneo, M.E., et al. 2012 Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories. IEEE Trans. Plasma Sci. 40 (12), 32223245.CrossRefGoogle Scholar
Cvejić, M., et al. 2022 Self-generated plasma rotation in a z-pinch implosion with preembedded axial magnetic field. Phys. Rev. Lett. 128 (1), 015001.CrossRefGoogle Scholar
Felber, F.S., Malley, M.M., Wessel, F.J., Matzen, M.K., Palmer, M.A., Spielman, R.B., Liberman, M.A. & Velikovich, A.L. 1988 Compression of ultrahigh magnetic fields in a gas-puff Z pinch. Phys. Fluids 31 (7), 20532056.CrossRefGoogle Scholar
Galas, F. 1993 Generalized symmetries for the ideal MHD equations. Physica D: Nonlinear Phenomena 63 (1–2), 8798.CrossRefGoogle Scholar
Garanin, S.F. 2013 Physical Processes in the MAGO/MFT Systems. Los Alamos National Laboratory Report No. LA-UR-13-29094, english translation edited by R. E. Reinovsky.Google Scholar
Giuliani, J.L. & Commisso, R.J. 2015 A review of the gas-puff $Z$-pinch as an x-ray and neutron source. IEEE Trans. Plasma Sci. 43 (8), 23852453.CrossRefGoogle Scholar
Gomez, M.R., et al. 2020 Performance scaling in magnetized liner inertial fusion experiments. Phys. Rev. Lett. 125 (15), 155002.CrossRefGoogle ScholarPubMed
Guderley, G. 1942 Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung 19, 302311.Google Scholar
Huete, C., Velikovich, A.L., Martinez-Ruiz, D. & Calvo-Rivera, A. 2021 Stability of expanding accretion shocks for an arbitrary equation of state. J. Fluid Mech. 927, A35.CrossRefGoogle Scholar
Huneault, J., Plant, D. & Higgins, A.J. 2019 Rotational stabilisation of the Rayleigh–Taylor instability at the inner surface of an imploding liquid shell. J. Fluid Mech. 873, 531567.CrossRefGoogle Scholar
Hunter, C. 1960 On the collapse of an empty cavity in water. J. Fluid Mech. 8 (2), 241263.CrossRefGoogle Scholar
Jones, B., et al. 2006 K-shell radiation physics in low-to moderate-atomic-number z-pinch plasmas on the Z accelerator. J. Quant. Spectrosc. Radiat. Transfer 99 (1–3), 341348.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1960 Electrodynamics of Continuous Media. Pergamon Press.Google Scholar
Lazarus, R.B. 1981 Self-similar solutions for converging shocks and collapsing cavities. SIAM J. Numer. Anal. 18 (2), 316371.CrossRefGoogle Scholar
Lebedev, S.V., Beg, F.N., Bland, S.N., Chittenden, J.P., Dangor, A.E., Haines, M.G., Kwek, K.H., Pikuz, S.A. & Shelkovenko, T.A. 2001 Effect of discrete wires on the implosion dynamics of wire array Z pinches. Phys. Plasmas 8 (8), 37343747.CrossRefGoogle Scholar
Liberman, M.A. & Velikovich, A.L. 1986 Self-similar motions in Z-pinch dynamics. Nucl. Fusion 26 (6), 709728.CrossRefGoogle Scholar
Lindemuth, I.R. 2017 An extended study of the ignition design space of magnetized target fusion. Phys. Plasmas 24 (5), 055602.CrossRefGoogle Scholar
Lindemuth, I.R. & Kirkpatrick, R.C. 1983 Parameter space for magnetized fuel targets in inertial confinement fusion. Nucl. Fusion 23 (3), 263284.CrossRefGoogle Scholar
Lock, R.M. & Mestel, A.J. 2008 Annular self-similar solutions in ideal magnetogasdynamics. J. Plasma Phys. 74 (4), 531554.CrossRefGoogle Scholar
Maron, Y., et al. 2013 Pressure and energy balance of stagnating plasmas in z-pinch experiments: implications to current flow at stagnation. Phys. Rev. Lett. 111 (3), 035001.CrossRefGoogle ScholarPubMed
Mikitchuk, D., et al. 2019 Effects of a preembedded axial magnetic field on the current distribution in a $Z$-pinch implosion. Phys. Rev. Lett. 122, 045001.CrossRefGoogle Scholar
Mostert, W., Pullin, D.I., Samtaney, R. & Wheatley, V. 2016 Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current. J. Fluid Mech. 793, 414443.CrossRefGoogle Scholar
Nath, G. & Singh, S. 2020 Similarity solutions for cylindrical shock wave in rotating ideal gas with or without magnetic field using Lie group theoretic method. Eur. Phys. J. Plus 135 (11), 929.CrossRefGoogle Scholar
Noh, W.F. 1983 Artificial viscosity (Q) and artificial heat flux (H) errors for spherically divergent shocks. Tech. Rep. 5772058. Lawrence Livermore National Lab., CA (USA).CrossRefGoogle Scholar
Noh, W.F. 1987 Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux. J. Comput. Phys. 72 (1), 78120.CrossRefGoogle Scholar
Ovsiannikov, L.V. 1982 Group analysis of differential equations. In Group Analysis of Differential Equations (ed. L.V. Ovsiannikov), pp. 1–47. Academic Press.CrossRefGoogle Scholar
Pereira, N.R. & Davis, J. 1988 X rays from z-pinches on relativistic electron-beam generators. J. Appl. Phys. 64 (3), R1R27.CrossRefGoogle Scholar
Pullin, D.I., Mostert, W., Wheatley, V. & Samtaney, R. 2014 Converging cylindrical shocks in ideal magnetohydrodynamics. Phys. Fluids 26 (9), 097103.CrossRefGoogle Scholar
Robson, A.E. 1973 Linus-approach to controlled fusion through use of megagauss magnetic-fields. Report of NRL Progress (JUN), 7–16.Google Scholar
Rousskikh, A.G., Zhigalin, A.S., Oreshkin, V.I. & Baksht, R.B. 2017 Measuring the compression velocity of a z pinch in an axial magnetic field. Phys. Plasmas 24 (6), 063519.CrossRefGoogle Scholar
Sanz, J., Bouquet, S.E., Michaut, C. & Miniere, J. 2016 The spectrum of the Sedov–Taylor point explosion linear stability. Phys. Plasmas 23 (6), 062114.CrossRefGoogle Scholar
Sedov, L.I. 1959 Similarity and dimensional methods in mechanics. In Similarity and Dimensional Methods in Mechanics. Academic Press.Google Scholar
Seyler, C.E. 2020 Axial magnetic flux amplification in hall-magnetohydrodynamic simulations of externally magnetized z-pinches. Phys. Plasmas 27 (9), 092102.CrossRefGoogle Scholar
Shishlov, A.V., et al. 2006 Formation of tight plasma pinches and generation of high-power soft x-ray radiation pulses in fast Z-pinch implosions. Laser Phys. 16 (1), 183193.CrossRefGoogle Scholar
Sinars, D.B., et al. 2020 Review of pulsed power-driven high energy density physics research on Z at Sandia. Phys. Plasmas 27 (7), 070501.CrossRefGoogle Scholar
Slutz, S.A., Herrmann, M.C., Vesey, R.A., Sefkow, A.B., Sinars, D.B., Rovang, D.C., Peterson, K.J. & Cuneo, M.E. 2010 Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field. Phys. Plasmas 17 (5), 056303.CrossRefGoogle Scholar
Slutz, S.A. & Vesey, R.A. 2012 High-gain magnetized inertial fusion. Phys. Rev. Lett. 108 (2), 025003.CrossRefGoogle ScholarPubMed
Stanyukovich, K.P. 1960 Unsteady Motion of Continuous Media. Pergamon.Google Scholar
Stone, J.M., Tomida, K., White, C.J. & Felker, K.G. 2020 The Athena++ adaptive mesh refinement framework: design and magnetohydrodynamic solvers. Astrophys. J. Suppl. Ser. 249 (1), 4.CrossRefGoogle Scholar
Turchi, P.J. 2008 Imploding liner compression of plasma: concepts and issues. IEEE Trans. Plasma Sci. 36 (1), 5261.CrossRefGoogle Scholar
Turchi, P.J., Cooper, A.L., Ford, R. & Jenkins, D.J. 1976 Rotational stabilization of an imploding liquid cylinder. Phys. Rev. Lett. 36 (26), 15461549.CrossRefGoogle Scholar
Turchi, P.J., Cooper, A.L., Ford, R.D., Jenkins, D.J. & Burton, R.L. 1980 Review of the NRL liner implosion program. In Megagauss Physics and Technology, Proceedings of the 2nd International Conference on Megagauss Magnetic Field Generation and Related Topics, held in Washington, DC, May 30-June 1, 1979 (ed. P. J. Turchi), pp. 375-386. Plenum Press.CrossRefGoogle Scholar
Tzeferacos, P., Fatenejad, M., Flocke, N., Gregori, G., Lamb, D.Q., Lee, D., Meinecke, J., Scopatz, A. & Weide, K. 2012 Flash magnetohydrodynamic simulations of shock-generated magnetic field experiments. High Energy Density Phys. 8 (4), 322328.CrossRefGoogle Scholar
Velikovich, A.L. & Davis, J. 1995 Implosions, equilibria, and stability of rotating, radiating Z-pinch plasmas. Phys. Plasmas 2 (12), 45134520.CrossRefGoogle Scholar
Velikovich, A.L. & Giuliani, J.L. 2018 Solution of the Noh problem with an arbitrary equation of state. Phys. Rev. E 98 (1), 013105.CrossRefGoogle ScholarPubMed
Velikovich, A.L., Giuliani, J.L. & Zalesak, S.T. 2018 Generalized Noh self-similar solutions of the compressible euler equations for hydrocode verification. J. Comput. Phys. 374, 843862.CrossRefGoogle Scholar
Velikovich, A.L., Giuliani, J.L., Zalesak, S.T., Thornhill, J.W. & Gardiner, T.A. 2012 Exact self-similar solutions for the magnetized Noh Z pinch problem. Phys. Plasmas 19 (1), 012707.CrossRefGoogle Scholar
Velikovich, A.L., Murakami, M., Taylor, B.D., Giuliani, J.L., Zalesak, S.T. & Iwamoto, Y. 2016 Stability of stagnation via an expanding accretion shock wave. Phys. Plasmas 23 (5), 052706.CrossRefGoogle Scholar
Venkatesan, R.C. & Choe, W.H. 1992 Self-similar solutions for the supersonic implosion of a screw-pinch plasma. Phys. Fluids B: Plasma Phys. 4 (6), 15241533.CrossRefGoogle Scholar
Vishwakarma, J.P., Maurya, A.K. & Singh, K.K. 2007 Self-similar adiabatic flow headed by a magnetogasdynamic cylindrical shock wave in a rotating non-ideal gas. Geophys. Astrophys. Fluid Dyn. 101 (2), 155168.CrossRefGoogle Scholar
Whitham, G.B. 2011 Linear and Nonlinear Waves, John Wiley & Sons.Google Scholar
Wurden, G.A., et al. 2016 Magneto-inertial fusion. J. Fusion Energy 35 (1), 6977.CrossRefGoogle Scholar
Zel'dovich, Y.B. & Raizer, Y.P. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Courier Corporation.Google Scholar