Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T13:31:41.718Z Has data issue: false hasContentIssue false

Size-dependent transient nature of localized turbulence in transitional channel flow

Published online by Cambridge University Press:  26 October 2022

Duo Xu
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Baofang Song*
Affiliation:
Centre for Applied Mathematics, Tianjin University, Tianjin 300072, PR China
*
Email address for correspondence: baofang_song@tju.edu.cn

Abstract

It has been reported that a fully localized turbulent band in channel flow becomes sustained when the Reynolds number is above a threshold. Here we show evidence that turbulent bands are of a transient nature instead. When the band length is controlled to be fixed, the lifetime of turbulent bands appears to be stochastic and exponentially distributed, a sign of a memoryless transient nature. Besides increasing with the Reynolds number, the mean lifetime also strongly increases with the band length. Given that the band length always changes over time in real channel flow, this size dependence may translate into a time dependence, which needs to be taken into account when clarifying the relationship between channel flow transition and the directed percolation universality class.

Type
JFM Rapids
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, K., Moxey, D., De Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333, 192196.CrossRefGoogle ScholarPubMed
Avila, M., Willis, A.P. & Hof, B. 2010 On the transient nature of localized pipe flow turbulence. J. Fluid Mech. 646, 127136.CrossRefGoogle Scholar
Barkley, D. 2016 Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803, P1.CrossRefGoogle Scholar
Borrero-Echeverry, D., Schatz, M.F. & Tagg, R. 2010 Transient turbulence in Taylor–Couette flow. Phys. Rev. E 81, 025301.CrossRefGoogle ScholarPubMed
Bottin, S. & Chaté, H. 1998 Statistical analysis of the transition to turbulence in plane Couette flow. Eur. Phys. J. B 6, 143155.CrossRefGoogle Scholar
Chantry, M., Tuckerman, L.S. & Barkley, D. 2017 Universal continuous transition to turbulence in a planar shear flow. J. Fluid Mech. 824, R1.CrossRefGoogle Scholar
Chen, K., Xu, D. & Song, B. 2022 Propagation speed of turbulent fronts in pipe flow at high Reynolds numbers. J. Fluid Mech. 935, A11.CrossRefGoogle Scholar
Duguet, Y. & Schlatter, P. 2013 Oblique laminar–turbulent interfaces in plane shear flows. Phys. Rev. Lett. 110, 034502.CrossRefGoogle ScholarPubMed
Eckhardt, B., Schneider, T.M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447–68.CrossRefGoogle Scholar
Gomé, S., Tuckerman, L.S. & Barkley, D. 2020 Statistical transition to turbulence in plane channel flow. Phys. Rev. Fluids 5, 083905.CrossRefGoogle Scholar
Gomé, S., Tuckerman, L.S. & Barkley, D. 2022 Extreme events in transitional turbulence. Trans. R. Soc. A 380, 20210036.Google ScholarPubMed
Henningson, D.S. & Alfredsson, P.H. 1987 The wave structure of turbulent spots in plane Poiseuille flow. J. Fluid Mech. 178, 405421.CrossRefGoogle Scholar
Hinrichsen, H. 2000 Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49 (7), 815958.CrossRefGoogle Scholar
Hof, B., Westerweel, J., Schneider, T.M. & Eckhardt, B. 2006 Finite lifetime of turbulence in shear flows. Nature 443, 5962.CrossRefGoogle ScholarPubMed
Kanazawa, T. 2018 Lifetime and growing process of localized turbulence in plane channel flow. PhD thesis, Osaka University.Google Scholar
Kashyap, P.V., Duguet, Y. & Chantry, M. 2020 a Far field of turbulent spots. Phys. Rev. Fluids 5, 103902.CrossRefGoogle Scholar
Kashyap, P.V., Duguet, Y. & Dauchot, O. 2020 b Flow statistics in the transitional regime of plane channel flow. Entropy 22, 1001.CrossRefGoogle ScholarPubMed
Klotz, L., Lemoult, G., Avila, K. & Hof, B. 2022 Phase transition to turbulence in spatially extended shear flows. Phys. Rev. Lett. 128, 014502.CrossRefGoogle ScholarPubMed
Kohyama, K., Sano, M. & Tsukahara, T. 2022 Sidewall effect on turbulent band in subcritical transition of high-aspect-ratio duct flow. Phys. Fluids 34, 084112.CrossRefGoogle Scholar
Lemoult, G., Shi, L., Avila, K., Jalikop, S.V., Avila, M. & Hof, B. 2016 Directed percolation phase transition to sustained turbulence in Couette flow. Nat. Phys. 12, 254258.CrossRefGoogle Scholar
Liu, J., Xiao, Y., Zhang, L., Li, M., Tao, J. & Xu, S. 2020 Extension at the downstream end of turbulent band in channel flow. Phys. Fluids 32, 121703.CrossRefGoogle Scholar
Manneville, P. & Shimizu, M. 2020 Transitional channel flow: a minimal stochastic model. Entropy 22, 1348.CrossRefGoogle ScholarPubMed
Mukund, V. & Hof, B. 2018 The critical point of the transition to turbulence in pipe flow. J. Fluid Mech. 839, 7694.CrossRefGoogle Scholar
Mukund, V., Paranjape, C., Sitte, M.P. & Hof, B. 2021 Aging and memory of transitional turbulence. arXiv:2112.06537.Google Scholar
Mullin, T. 2011 Experimental studies of transition to turbulence in a pipe. Annu. Rev. Fluid Mech. 43, 124.CrossRefGoogle Scholar
Paranjape, C.S. 2019 Onset of turbulence in plane Poiseuille flow. PhD thesis, IST Austria.Google Scholar
Paranjape, C.S., Duguet, Y. & Hof, B. 2020 Oblique stripe solutions of channel flow. J. Fluid Mech. 897, A7.CrossRefGoogle Scholar
Peixinho, J. & Mullin, T. 2006 Decay of turbulence in pipe flow. Phys. Rev. Lett. 96, 094501.CrossRefGoogle ScholarPubMed
Pershin, A., Beaume, C., Li, K. & Tobias, S.M. 2021 Can neural networks predict dynamics they have never seen? arXiv:2111.06783v1.Google Scholar
Rolland, J. 2022 Collapse of transitional wall turbulence captured using a rare events algorithm. J. Fluid Mech. 931, A22.CrossRefGoogle Scholar
Sano, M. & Tamai, K. 2016 A universal transition to turbulence in channel flow. Nat. Phys. 12, 249253.CrossRefGoogle Scholar
Shi, L., Avila, M. & Hof, B. 2013 Scale invariance at the onset of turbulence in Couette flow. Phys. Rev. Lett. 110, 204502.CrossRefGoogle ScholarPubMed
Shih, H.-Y., Hsieh, T.-L. & Goldenfeld, N. 2016 Ecological collapse and the emergence of travelling waves at the onset of shear turbulence. Nat. Phys. 12, 245248.CrossRefGoogle Scholar
Shimizu, M., Kanazawa, T. & Kawahara, G. 2019 Exponential growth of lifetime of localized turbulence with its extent in channel flow. Fluid Dyn. Res. 51, 011404.CrossRefGoogle Scholar
Shimizu, M. & Manneville, P. 2019 Bifurcations to turbulence in transitional channel flow. Phys. Rev. Fluids 4, 113903.CrossRefGoogle Scholar
Song, B. & Xiao, X. 2020 Trigger turbulent bands directly at low Reynolds numbers in channel flow using a moving-force technique. J. Fluid Mech. 903, A43.CrossRefGoogle Scholar
Takeda, K., Duguet, Y. & Tsukahara, T. 2020 Intermittency and critical scaling in annular Couette flow. Entropy 22, 988.CrossRefGoogle ScholarPubMed
Tao, J.J., Eckhardt, B. & Xiong, X.M. 2018 Extended localized structures and the onset of turbulence in channel flow. Phys. Rev. Fluids 3, 011902(R).CrossRefGoogle Scholar
Taylor, J.R., Deusebio, E., Caulfield, C.P. & Kerswell, R.R. 2016 A new method for isolating turbulent states in transitional stratified plane Couette flow. J. Fluid Mech. 808, R1.CrossRefGoogle Scholar
Tsukahara, T., Seki, Y., Kawamura, H. & Tochio, D. 2005 DNS of turbulent channel flow at very low Reynolds numbers. In Proceedings of Fourth International Symposium on Turbulence and Shear Flow Phenomena, pp. 935–940. Williamsburg, USA.CrossRefGoogle Scholar
Wu, H. & Song, B. 2022 A numerical study of the side-wall effects on turbulent bands in channel flow at transitional Reynolds numbers. Comput. Fluids 240, 105420.CrossRefGoogle Scholar
Wygnanski, I.J., Sokolov, M. & Friedman, D. 1975 On transition in a pipe. Part 2. The equilibrium puff. J. Fluid Mech. 69, 283304.CrossRefGoogle Scholar
Xiao, X. & Song, B. 2020 a The growth mechanism of turbulent bands in channel flow at low Reynolds numbers. J. Fluid Mech. 883, R1.CrossRefGoogle Scholar
Xiao, X. & Song, B. 2020 b Kinematics and dynamics of turbulent bands at low Reynolds numbers in channel flow. Entropy 22, 1167.CrossRefGoogle ScholarPubMed