Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-22T23:25:38.552Z Has data issue: false hasContentIssue false

Radial dynamics of an encapsulated microbubble with interface energy

Published online by Cambridge University Press:  06 December 2021

Nehal Dash
Affiliation:
Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
Ganesh Tamadapu*
Affiliation:
Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
*
Email address for correspondence: gt@iitm.ac.in

Abstract

In this work a mathematical model based on interface energy is proposed within the framework of surface continuum mechanics to study the dynamics of encapsulated bubbles. The interface model naturally induces a residual stress field into the bulk of the bubble, with possible expansion or shrinkage from a stress-free configuration to a natural equilibrium configuration. The significant influence of interface area strain and the coupled effect of stretch and curvature is observed in the numerical simulations based on constrained optimization. Due to the bending rigidity related to additional terms, the dynamic interface tension can become negative, but not due to the interface area strain. The coupled effect of interface strain and curvature term observed is new and plays a dominant role in the dominant compression behaviour of encapsulated bubbles observed in the experiments. The present model is validated by fitting the experimental data of $1.7\,\mathrm {\mu }$m, $1.4\,\mathrm {\mu }$m and $1\,\mathrm {\mu }$m radii bubbles by calculating the optimized parameters. This work also highlights the role of interface parameters and natural configuration gas pressure in estimating the size-independent viscoelastic material properties of encapsulated bubbles with interesting future developments.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abou-Saleh, R.H., Peyman, S.A., Critchley, K., Evans, S.D. & Thomson, N.H. 2013 Nanomechanics of lipid encapsulated microbubbles with functional coatings. Langmuir 29 (12), 40964103.CrossRefGoogle ScholarPubMed
Argudo, D., Bethel, N.P., Marcoline, F.V. & Grabe, M. 2016 Continuum descriptions of membranes and their interaction with proteins: towards chemically accurate models. Biochim. Biophys. Acta Biomembr. 1858 (7, Part B), 16191634.CrossRefGoogle ScholarPubMed
Basude, R. & Wheatley, M.A. 2001 Generation of ultraharmonics in surfactant based ultrasound contrast agents: use and advantages. Ultrasonics 39 (6), 437444.CrossRefGoogle ScholarPubMed
Bian, X., Litvinov, S. & Koumoutsakos, P. 2020 Bending models of lipid bilayer membranes: spontaneous curvature and area-difference elasticity. Comput. Meth. Appl. Mech. Engng 359, 112758.CrossRefGoogle Scholar
Boal, D. 2002 Mechanics of the Cell. Cambridge University Press.Google Scholar
Bruot, N. & Caupin, F. 2016 Curvature dependence of the liquid–vapor surface tension beyond the Tolman approximation. Phys. Rev. Lett. 116, 056102.CrossRefGoogle ScholarPubMed
Chabouh, G., Dollet, B., Quilliet, C. & Coupier, G. 2021 Spherical oscillations of encapsulated microbubbles: effect of shell compressibility and anisotropy. J. Acoust. Soc. Am. 149 (2), 12401257.CrossRefGoogle ScholarPubMed
Chang, P.H., Shun, K.K., Wu, S.-J. & Levene, H.B. 1995 Second harmonic imaging and harmonic doppler measurements with albunex. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42 (6), 10201027.CrossRefGoogle Scholar
Chomas, J.E., Dayton, P.A., May, D., Allen, J., Klibanov, A. & Ferrara, K. 2000 Optical observation of contrast agent destruction. Appl. Phys. Lett. 77 (7), 10561058.CrossRefGoogle Scholar
Church, C.C. 1995 The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J. Acoust. Soc. Am. 97 (3), 15101521.CrossRefGoogle Scholar
Dayton, P.A., Morgan, K.E., Klibanov, A.L., Brandenburger, G.H. & Ferrara, K.W. 1999 Optical and acoustical observations of the effects of ultrasound on contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46 (1), 220232.CrossRefGoogle ScholarPubMed
Doinikov, A.A. & Bouakaz, A. 2011 Review of shell models for contrast agent microbubbles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 (5), 981993.CrossRefGoogle ScholarPubMed
Doinikov, A.A., Haac, J.F. & Dayton, P.A. 2009 a Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles. Ultrasonics 49 (2), 269275.CrossRefGoogle ScholarPubMed
Doinikov, A.A., Haac, J.F. & Dayton, P.A. 2009 b Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations. Ultrasonics 49 (2), 263268.CrossRefGoogle ScholarPubMed
Dollet, B., van der Meer, S.M., Garbin, V., de Jong, N., Lohse, D. & Versluis, M. 2008 Nonspherical oscillations of ultrasound contrast agent microbubbles. Ultrasound Med. Biol. 34 (9), 14651473.CrossRefGoogle ScholarPubMed
Errico, C., Pierre, J., Pezet, S., Desailly, Y., Lenkei, Z., Couture, O. & Tanter, M. 2015 Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527 (7579), 499502.CrossRefGoogle ScholarPubMed
Frinking, P.J.A. & de Jong, N. 1998 Acoustic modeling of shell-encapsulated gas bubbles. Ultrasound Med. Biol. 24 (4), 523533.CrossRefGoogle ScholarPubMed
Fung, Y.C. 1977 A First Course in Continuum Mechanics. Prentice Hall.Google Scholar
Gao, X., Huang, Z., Qu, J. & Fang, D. 2014 A curvature-dependent interfacial energy-based interface stress theory and its applications to nano-structured materials: (i) general theory. J. Mech. Phys. Solids 66, 5977.CrossRefGoogle Scholar
Gong, Y., Cabodi, M. & Porter, T.M. 2014 Acoustic investigation of pressure-dependent resonance and shell elasticity of lipid-coated monodisperse microbubbles. Appl. Phys. Lett. 104 (7), 074103.CrossRefGoogle Scholar
Gorce, J.N., Arditi, M. & Schneider, M. 2000 Influence of bubble size distribution on the echogenicity of ultrasound contrast agents. Invest. Radiol. 35 (11), 661671.CrossRefGoogle ScholarPubMed
Helfield, B. 2019 A review of phospholipid encapsulated ultrasound contrast agent microbubble physics. Ultrasound Med. Biol. 45 (2), 282300.CrossRefGoogle ScholarPubMed
Helfield, B.L. & Goertz, D.E. 2013 Nonlinear resonance behavior and linear shell estimates for DefinityTM and MicroMarkerTM assessed with acoustic microbubble spectroscopy. J. Acoust. Soc. Am. 133 (2), 11581168.CrossRefGoogle ScholarPubMed
Helfrich, W. 1973 Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C: Biosci. 28 (11–12), 693703.CrossRefGoogle ScholarPubMed
Hernot, S. & Klibanov, A.L. 2008 Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev. 60 (10), 11531166.CrossRefGoogle ScholarPubMed
Hoff, L. 2001 Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging. Springer Science & Business Media.CrossRefGoogle Scholar
Hoff, L., Sontum, P.C. & Hoff, B. 1996 Acoustic properties of shell-encapsulated, gas-filled ultrasound contrast agents. In 1996 IEEE Ultrason. Sym. Proc., pp. 1441–1444.Google Scholar
I-Shih, L. 1982 On representations of anisotropic invariants. Intl J. Engng Sci. 20 (10), 10991109.CrossRefGoogle Scholar
Itskov, M. 2019 Tensor Algebra and Tensor Analysis for Engineers. Springer.CrossRefGoogle Scholar
Jiang, Q. & Lu, H.M. 2008 Size dependent interface energy and its applications. Surf. Sci. Rep. 63 (10), 427464.CrossRefGoogle Scholar
de Jong, N., Cornet, R. & Lancée, C.T. 1994 Higher harmonics of vibrating gas-filled microspheres. Part one: simulations. Ultrasonics 32 (6), 447453.CrossRefGoogle Scholar
de Jong, N., Emmer, M., Chin, C.T., Bouakaz, A., Mastik, F., Lohse, D. & Versluis, M. 2007 “Compression-only” behavior of phospholipid-coated contrast bubbles. Ultrasound Med. Biol. 33 (4), 653656.CrossRefGoogle ScholarPubMed
de Jong, N., Frinking, P.J.A., Bouakaz, A., Goorden, M., Schourmans, T., Jingping, X. & Mastik, F. 2000 Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. Ultrasound Med. Biol. 26 (3), 487492.CrossRefGoogle Scholar
de Jong, N. & Hoff, L. 1993 Ultrasound scattering properties of albunex microspheres. Ultrasonics 31 (3), 175181.CrossRefGoogle ScholarPubMed
de Jong, N., Hoff, L., Skotland, T. & Bom, N. 1992 Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. Ultrasonics 30 (2), 95103.CrossRefGoogle ScholarPubMed
Klibanov, A.L. 2006 Microbubble contrast agents. Invest. Radiol. 41 (3), 354362.CrossRefGoogle ScholarPubMed
Kooiman, K., Vos, H.J., Versluis, M. & de Jong, N. 2014 Acoustic behavior of microbubbles and implications for drug delivery. Adv. Drug Deliv. Rev. 72, 2848.CrossRefGoogle ScholarPubMed
Krasovitski, B. & Kimmel, E. 2006 Stability of an encapsulated bubble shell. Ultrasonics 44 (2), 216220.CrossRefGoogle ScholarPubMed
Li, Q., Matula, T.J., Tu, J., Guo, X. & Zhang, D. 2013 Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity. Phys. Med. Biol. 58 (4), 985998.CrossRefGoogle ScholarPubMed
Liang, H., Cao, Z., Wang, Z. & Dobrynin, A.V. 2018 Surface stress and surface tension in polymeric networks. ACS Macro Lett. 7 (1), 116121.CrossRefGoogle Scholar
Lindner, J.R. 2004 Microbubbles in medical imaging: current applications and future directions. Nat. Rev. Drug Discovery 3 (6), 527533.CrossRefGoogle ScholarPubMed
Liu, Y., Miyoshi, H. & Nakamura, M. 2006 Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J. Control. Release 114 (1), 8999.CrossRefGoogle ScholarPubMed
Liu, B., Zhou, X., Yang, F., Shen, H., Wang, S., Zhang, B., Zhi, G. & Wu, D. 2014 Fabrication of uniform sized polylactone microcapsules by premix membrane emulsification for ultrasound imaging. Polym. Chem. 5 (5), 16931701.CrossRefGoogle Scholar
Lum, J.S., Dove, J.D., Murray, T.W. & Borden, M.A. 2016 Single microbubble measurements of lipid monolayer viscoelastic properties for small-amplitude oscillations. Langmuir 32 (37), 94109417.CrossRefGoogle ScholarPubMed
Marmottant, P., van der Meer, S., Emmer, M., Versluis, M., de Jong, N., Hilgenfeldt, S. & Lohse, D. 2005 A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J. Acoust. Soc. Am. 118 (6), 34993505.CrossRefGoogle Scholar
Medasani, B. & Vasiliev, I. 2009 Computational study of the surface properties of aluminum nanoparticles. Surf. Sci. 603 (13), 20422046.CrossRefGoogle Scholar
van der Meer, S.M., Dollet, B., Goertz, D.E., de Jong, N., Versluis, M. & Lohse, D. 2006 Surface modes of ultrasound contrast agent microbubbles. In 2006 IEEE Ultrasonics Symposium, pp. 112–115.Google Scholar
van der Meer, S.M., Dollet, B., Voormolen, M.M., Chin, C.T., Bouakaz, A., de Jong, N., Versluis, M. & Lohse, D. 2007 Microbubble spectroscopy of ultrasound contrast agents. J. Acoust. Soc. Am. 121 (1), 648656.CrossRefGoogle ScholarPubMed
Moody, M.P. & Attard, P. 2003 Curvature-dependent surface tension of a growing droplet. Phys. Rev. Lett. 91, 056104.CrossRefGoogle ScholarPubMed
Morgan, K.E., Allen, J.S., Dayton, P.A., Chomas, J.E., Klibaov, A.L. & Ferrara, K.W. 2000 Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size. IEEE Trans. Ultrason. Ferroelectr. Freq. 47 (6), 14941509.CrossRefGoogle ScholarPubMed
Parrales, M.A., Fernandez, J.M., Perez-Saborid, M., Kopechek, J.A. & Porter, T.M. 2014 Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties. J. Acoust. Soc. Am. 136 (3), 10771084.CrossRefGoogle ScholarPubMed
Paul, S., Katiyar, A., Sarkar, K., Chatterjee, D., Shi, W.T. & Forsberg, F. 2010 Material characterization of the encapsulation of an ultrasound contrast microbubble and its subharmonic response: strain-softening interfacial elasticity model. J. Acoust. Soc. Am. 127 (6), 38463857.CrossRefGoogle ScholarPubMed
Payne, E.M.B., Illesinghe, S.J., Ooi, A. & Manasseh, R. 2005 Symmetric mode resonance of bubbles attached to a rigid boundary. J. Acoust. Soc. Am. 118 (5), 28412849.CrossRefGoogle Scholar
Pennisi, S. & Trovato, M. 1987 On the irreducibility of professor G.F. Smith's representations for isotropic functions. Intl J. Engng Sci. 25 (8), 10591065.CrossRefGoogle Scholar
Postema, M., Van Wamel, A., Lancée, C.T. & De Jong, N. 2004 Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med. Biol. 30 (6), 827840.CrossRefGoogle ScholarPubMed
Qin, S. & Ferrara, K.W. 2010 A model for the dynamics of ultrasound contrast agents in vivo. J. Acoust. Soc. Am. 128 (3), 1511.CrossRefGoogle Scholar
Rallabandi, B., Marthelot, J., Jambon-Puillet, E., Brun, P.T. & Eggers, J. 2019 Curvature regularization near contacts with stretched elastic tubes. Phys. Rev. Lett. 123, 168002.CrossRefGoogle ScholarPubMed
Rangamani, P., Benjamini, A., Agrawal, A., Smit, B., Steigmann, D.J. & Oster, G. 2013 Small scale membrane mechanics. Biomech. Model. Mechanobiol. 13 (4), 697711.CrossRefGoogle ScholarPubMed
van Rooij, T., Luan, Y., Renaud, G., van der Steen, A.F.W., Versluis, M., de Jong, N. & Kooiman, K. 2015 Non-linear response and viscoelastic properties of lipid-coated microbubbles: DSPC versus DPPC. Ultrasound Med. Biol. 41 (5), 14321445.CrossRefGoogle ScholarPubMed
Sagis, L.M.C. 2014 Dynamic behavior of interfaces: modeling with nonequilibrium thermodynamics. Adv. Colloid Interface Sci. 206, 328343.CrossRefGoogle ScholarPubMed
Santos, E.B., Morris, J.K., Glynos, E., Sboros, V. & Koutsos, V. 2012 Nanomechanical properties of phospholipid microbubbles. Langmuir 28 (13), 57535760.CrossRefGoogle Scholar
Sarkar, K., Shi, W.T., Chatterjee, D. & Forsberg, F. 2005 Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. J. Acoust. Soc. Am. 118 (1), 539550.CrossRefGoogle ScholarPubMed
Schulman, R.D., Trejo, M., Salez, T., Raphaël, E. & Dalnoki-Veress, K. 2018 Surface energy of strained amorphous solids. Nat. Commun. 9 (1), 982.CrossRefGoogle ScholarPubMed
Segers, T., de Rond, L., de Jong, N., Borden, M. & Versluis, M. 2016 Stability of monodisperse phospholipid-coated microbubbles formed by flow-focusing at high production rates. Langmuir 32 (16), 39373944.CrossRefGoogle ScholarPubMed
Segers, T., Gaud, E., Casqueiro, G., Lassus, A., Versluis, M. & Frinking, P. 2020 Foam-free monodisperse lipid-coated ultrasound contrast agent synthesis by flow-focusing through multi-gas-component microbubble stabilization. Appl. Phys. Lett. 116 (17), 173701.CrossRefGoogle Scholar
Shafi, A.S., McClements, J., Albaijan, I., Abou-Saleh, R.H., Moran, C. & Koutsos, V. 2019 Probing phospholipid microbubbles by atomic force microscopy to quantify bubble mechanics and nanostructural shell properties. Colloids Surf. B 181, 506515.CrossRefGoogle ScholarPubMed
Shao, W. & Chen, W. 2015 The rupture of viscoelastic shell bubble under high intensity ultrasound drive. J. Appl. Phys. 117 (2), 024702.CrossRefGoogle Scholar
Shi, W.T., Forsberg, F., Hall, A.L., Chiao, R.Y., Liu, J.-B., Miller, S., Thomenius, K.E., Wheatley, M.A. & Goldberg, B.B. 1999 Subharmonic imaging with microbubble contrast agents: initial results. Ultrason. Imaging 21 (2), 7994.CrossRefGoogle ScholarPubMed
Sijl, J., Overvelde, M., Dollet, B., Garbin, V., De Jong, N., Lohse, D. & Versluis, M. 2011 “Compression-only” behavior: a second-order nonlinear response of ultrasound contrast agent microbubbles. J. Acoust. Soc. Am. 129 (4), 17291739.CrossRefGoogle ScholarPubMed
Song, R., Peng, C., Xu, X., Wang, J., Yu, M., Hou, Y., Zou, R. & Yao, S. 2018 Controllable formation of monodisperse polymer microbubbles as ultrasound contrast agents. ACS Appl. Mater. Interfaces 10 (17), 1431214320.CrossRefGoogle ScholarPubMed
Steigmann, D.J. 2001 Nonlinear Elasticity: Theory and Applications. Cambridge University Press.Google Scholar
Steigmann, D.J. & Ogden, R.W. 1999 Elastic surface-substrate interactions. Proc. R. Soc. Lond. A 455 (1982), 437474.CrossRefGoogle Scholar
Steinmann, P. 2015 Geometrical Foundations of Continuum Mechanics. Springer.CrossRefGoogle Scholar
Stride, E. & Saffari, N. 2003 Microbubble ultrasound contrast agents: a review. Proc. Inst. Mech. Engng H 217 (6), 429447.CrossRefGoogle ScholarPubMed
Tachibana, K. & Tachibana, S. 1999 Application of ultrasound energy as a new drug delivery system. Japan J. Appl. Phys. 38 (5S), 3014.CrossRefGoogle Scholar
Tolman, R.C. 1949 The effect of droplet size on surface tension. J. Chem. Phys. 17 (3), 333337.CrossRefGoogle Scholar
Tsiglifis, K. & Pelekasis, N.A. 2008 Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: the effect of membrane constitutive law. J. Acoust. Soc. Am. 123 (6), 40594070.CrossRefGoogle ScholarPubMed
Tsutsui, J.M., Xie, F. & Porter, R.T. 2004 The use of microbubbles to target drug delivery. Cardiovasc. Ultrasound 2 (1), 17.CrossRefGoogle ScholarPubMed
Tu, J., Guan, J., Qiu, Y. & Matula, T.J. 2009 Estimating the shell parameters of SonoVue® microbubbles using light scattering. J. Acoust. Soc. Am. 126 (6), 29542962.CrossRefGoogle Scholar
Unger, E.C., Hersh, E., Vannan, M., Matsunaga, T.O. & McCreery, T. 2001 Local drug and gene delivery through microbubbles. Prog. Cardiovasc. Dis. 44 (1), 4554.CrossRefGoogle ScholarPubMed
Unger, E.C., Porter, T., Culp, W., Labell, R., Matsunaga, T. & Zutshi, R. 2004 Therapeutic applications of lipid-coated microbubbles. Adv. Drug Deliv. Rev. 56 (9), 12911314.CrossRefGoogle ScholarPubMed
Versluis, M., Goertz, D.E., Palanchon, P., Heitman, I.L., van der Meer, S.nder M., Dollet, B., de Jong, N. & Lohse, D. 2010 Microbubble shape oscillations excited through ultrasonic parametric driving. Phys. Rev. E 82, 026321.CrossRefGoogle ScholarPubMed
Versluis, M., Stride, E., Lajoinie, G., Dollet, B. & Segers, T. 2020 Ultrasound contrast agent modeling: a review. Ultrasound Med. Biol. 46 (9), 21172144.CrossRefGoogle ScholarPubMed
Versluis, M., van der Meer, S.M., Lohse, D., Palanchon, P., Goertz, D., Chin, C.T. & de Jong, N. 2004 Microbubble surface modes. In IEEE Ultrasonics Symposium, 2004, pp. 207–209.Google Scholar
Vos, H.J., Dollet, B., Versluis, M. & de Jong, N. 2011 Nonspherical shape oscillations of coated microbubbles in contact with a wall. Ultrasound Med. Biol. 37 (6), 935948.CrossRefGoogle Scholar
Wang, Q., Xue, C., Zhao, H., Qin, Y., Zhang, X. & Li, Y. 2020 The fabrication of protein microbubbles with diverse gas core and the novel exploration on the role of interface introduction in protein crystallization. Colloids Surf. A 589, 124471.CrossRefGoogle Scholar
Zheng, Q.S. 1993 Two-dimensional tensor function representation for all kinds of material symmetry. Proc. R. Soc. Lond. A 443 (1917), 127138.Google Scholar
Zheng, Q.S. & Boehler, J.P. 1994 The description, classification, and reality of material and physical symmetries. Acta Mech. 102 (1–4), 7389.CrossRefGoogle Scholar
Supplementary material: File

Dash and Tamadapu supplementary material

Dash and Tamadapu supplementary material

Download Dash and Tamadapu supplementary material(File)
File 165.6 KB