Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T16:16:16.330Z Has data issue: false hasContentIssue false

A quantitative assessment of viscous asymmetric vortex pair interactions

Published online by Cambridge University Press:  14 September 2017

Patrick J. R. Folz
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
Keiko K. Nomura*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
*
Email address for correspondence: knomura@ucsd.edu

Abstract

The interactions of two like-signed vortices in viscous fluid are investigated using two-dimensional numerical simulations performed across a range of vortex strength ratios, $\unicode[STIX]{x1D6EC}=\unicode[STIX]{x1D6E4}_{1}/\unicode[STIX]{x1D6E4}_{2}\leqslant 1$, corresponding to vortices of circulation, $\unicode[STIX]{x1D6E4}_{i}$, with differing initial size and/or peak vorticity. In all cases, the vortices evolve by viscous diffusion before undergoing a primary convective interaction, which ultimately results in a single vortex. The post-interaction vortex is quantitatively evaluated in terms of an enhancement factor, $\unicode[STIX]{x1D700}=\unicode[STIX]{x1D6E4}_{end}/\unicode[STIX]{x1D6E4}_{2,start}$, which compares its circulation, $\unicode[STIX]{x1D6E4}_{end}$, to that of the stronger starting vortex, $\unicode[STIX]{x1D6E4}_{2,start}$. Results are effectively characterized by a mutuality parameter, $MP\equiv (S/\unicode[STIX]{x1D714})_{1}/(S/\unicode[STIX]{x1D714})_{2}$, where the ratio of induced strain rate, $S$, to peak vorticity, $\unicode[STIX]{x1D714}$, for each vortex, $(S/\unicode[STIX]{x1D714})_{i}$, is found to have a critical value, $(S/\unicode[STIX]{x1D714})_{cr}\approx 0.135$, above which core detrainment occurs. If $MP$ is sufficiently close to unity, both vortices detrain and a two-way mutual entrainment process leads to $\unicode[STIX]{x1D700}>1$, i.e. merger. In asymmetric interactions and mergers, generally one vortex dominates; the weak/no/strong vortex winner regimes correspond to $MP<,=,>1$, respectively. As $MP$ deviates from unity, $\unicode[STIX]{x1D700}$ decreases until a critical value, $MP_{cr}$ is reached, beyond which there is only a one-way interaction; one vortex detrains and is destroyed by the other, which dominates and survives. There is no entrainment and $\unicode[STIX]{x1D700}\sim 1$, i.e. only a straining out occurs. Although $(S/\unicode[STIX]{x1D714})_{cr}$ appears to be independent of Reynolds number, $MP_{cr}$ shows a dependence. Comparisons are made with available experimental data from Meunier (2001, PhD thesis, Université de Provence-Aix-Marseille I).

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandt, L. K. & Nomura, K. K. 2006 The physics of vortex merger: further insight. Phys. Fluids 18 (5), 051701.CrossRefGoogle Scholar
Brandt, L. K. & Nomura, K. K. 2007 The physics of vortex merger and the effects of ambient stable stratification. J. Fluid Mech. 592, 413446.CrossRefGoogle Scholar
Brandt, L. K. & Nomura, K. K. 2010 Characterization of the interactions of two unequal co-rotating vortices. J. Fluid Mech. 646, 233253.CrossRefGoogle Scholar
Carnevale, G. F., McWilliams, J. C., Pomeau, Y., Weiss, J. B. & Young, W. R. 1991 Evolution of vortex statistics in two-dimensional turbulence. Phys. Rev. Lett. 66 (21), 27352737.CrossRefGoogle ScholarPubMed
Carnevale, G. F., McWilliams, J. C., Pomeau, Y., Weiss, J. B. & Young, W. R. 1992 Rates, pathways, and end states of nonlinear evolution in decaying two-dimensional turbulence: scaling theory versus selective decay. Phys. Fluids A 4 (6), 13141316.CrossRefGoogle Scholar
Cerretelli, C. & Williamson, C. H. K. 2003 The physical mechanism for vortex merging. J. Fluid Mech. 475, 4177.CrossRefGoogle Scholar
Dritschel, D. G., Scott, R. K., Macaskill, C., Gottwald, G. A. & Tran, C. V. 2008 Unifying scaling theory for vortex dynamics in two-dimensional turbulence. Phys. Rev. Lett. 101 (9), 094501.CrossRefGoogle ScholarPubMed
Dritschel, D. G. & Waugh, D. W. 1992 Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids A 4 (8), 17371744.CrossRefGoogle Scholar
Folz, P. J. R. & Nomura, K. K. 2014 Interaction of two equal co-rotating viscous vortices in the presence of background shear. Fluid Dyn. Res. 46 (3), 031423.CrossRefGoogle Scholar
Gerz, T., Schumann, U. & Elghobashi, S. E. 1989 Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech. 200, 563594.CrossRefGoogle Scholar
Huang, M. J. 2005 The physical mechanism of symmetric vortex merger: a new viewpoint. Phys. Fluids 17 (7), 074105.CrossRefGoogle Scholar
Huang, M. J. 2006 A comparison between asymmetric and symmetric vortex mergers. WSEAS Trans. Fluid Mech. 1 (5), 488496.Google Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88.Google Scholar
Jing, F., Kanso, E. & Newton, P. K. 2012 Insights into symmetric and asymmetric vortex mergers using the core growth model. Phys. Fluids 24 (7), 073101.CrossRefGoogle Scholar
Kimura, Y. & Herring, J. R. 2001 Gradient enhancement and filament ejection for a non-uniform elliptic vortex in two-dimensional turbulence. J. Fluid Mech. 439, 4356.CrossRefGoogle Scholar
Le Dizès, S. & Laporte, F. 2002 Theoretical predictions for the elliptical instability in a two-vortex flow. J. Fluid Mech. 471, 169201.CrossRefGoogle Scholar
Le Dizès, S. & Verga, A. 2002 Viscous interactions of two co-rotating vortices before merging. J. Fluid Mech. 467, 389410.CrossRefGoogle Scholar
Mariotti, A., Legras, B. & Dritschel, D. G. 1994 Vortex stripping and the erosion of coherent structures in two-dimensional flows. Phys. Fluids 6 (12), 39543962.CrossRefGoogle Scholar
Maze, G., Carton, X. & Lapeyre, G. 2004 Dynamics of a 2D vortex doublet under external deformation. Regular Chaotic Dyn. 9 (4), 477497.CrossRefGoogle Scholar
McWilliams, J. C. 1990 The vortices of two-dimensional turbulence. J. Fluid Mech. 219, 361385.CrossRefGoogle Scholar
Melander, M. V., McWilliams, J. C. & Zabusky, N. J. 1987a Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech. 178, 137159.CrossRefGoogle Scholar
Melander, M. V., Zabusky, N. J. & McWilliams, J. C. 1987b Asymmetric vortex merger in two dimensions: which vortex is victorious? Phys. Fluids 30 (9), 26102612.CrossRefGoogle Scholar
Melander, M. V., Zabusky, N. J. & McWilliams, J. C. 1988 Symmetric vortex merger in two dimensions: causes and conditions. J. Fluid Mech. 195, 303340.CrossRefGoogle Scholar
Meunier, P.2001 Etude expérimentale de deux tourbillons corotatifs. PhD thesis, Université de Provence-Aix-Marseille I.Google Scholar
Meunier, P., Ehrenstein, U., Leweke, T. & Rossi, M. 2002 A merging criterion for two-dimensional co-rotating vortices. Phys. Fluids 14 (8), 27572766.CrossRefGoogle Scholar
Orlandi, P. 2000 Fluid Flow Phenomena: A Numerical Toolkit. Fluid Flow Phenomena: A Numerical Toolkit, vol. 1. Springer.Google Scholar
Overman, E. A. II & Zabusky, N. J. 1982 Evolution and merger of isolated vortex structures. Phys. Fluids 25 (8), 12971305.CrossRefGoogle Scholar
Perrot, X. & Carton, X. 2010 2D vortex interaction in a non-uniform flow. Theoret. Comput. Fluid Dyn. 24 (1–4), 95100.CrossRefGoogle Scholar
Riccardi, G., Piva, R. & Benzi, R. 1995 A physical model for merging in two-dimensional decaying turbulence. Phys. Fluids 7 (12), 30913104.CrossRefGoogle Scholar
Saffman, P. G. 2001 Vortex Dynamics. Cambridge University Press.Google Scholar
Saffman, P. G. & Szeto, R. 1980 Equilibrium shapes of a pair of equal uniform vortices. Phys. Fluids 23 (12), 23392342.CrossRefGoogle Scholar
Sire, C., Chavanis, P. H. & Sopik, J. 2011 Effective merging dynamics of two and three fluid vortices: application to two-dimensional decaying turbulence. Phys. Rev. E 84 (5), 056317.Google ScholarPubMed
Tabeling, P. 2002 Two-dimensional turbulence: a physicist approach. Phys. Rep. 362 (1), 162.CrossRefGoogle Scholar
Trieling, R. R., Dam, C. E. C. & van Heijst, G. J. F. 2010 Dynamics of two identical vortices in linear shear. Phys. Fluids 22 (11), 117104.CrossRefGoogle Scholar
Trieling, R. R., Velasco Fuentes, O. U. & van Heijst, G. J. F. 2005 Interaction of two unequal corotating vortices. Phys. Fluids 17 (8), 087103.CrossRefGoogle Scholar
Waugh, D. W. 1992 The efficiency of symmetric vortex merger. Phys. Fluids A 4 (8), 17451758.CrossRefGoogle Scholar
Yasuda, I. & Flierl, G. R. 1997 Two-dimensional asymmetric vortex merger: merger dynamics and critical merger distance. Dyn. Atmos. Oceans 26 (3), 159181.CrossRefGoogle Scholar