Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T09:43:00.508Z Has data issue: false hasContentIssue false

Polydispersity effect on dry and immersed granular collapses: an experimental study

Published online by Cambridge University Press:  21 March 2024

Oscar Polanía*
Affiliation:
Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia LMGC, Université de Montpellier, CNRS, Montpellier, France
Nicolas Estrada*
Affiliation:
Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia
Emilien Azéma*
Affiliation:
LMGC, Université de Montpellier, CNRS, Montpellier, France Institut Universitaire de France (IUF), Paris, France
Mathieu Renouf*
Affiliation:
LMGC, Université de Montpellier, CNRS, Montpellier, France
Miguel Cabrera*
Affiliation:
Department of Geoscience & Engineering, TU Delft, Delft, The Netherlands

Abstract

The column collapse experiment is a simplified version of natural and industrial granular flows. In this set-up, a column built with grains collapses and spreads over a horizontal plane. Granular flows are often studied with a monodisperse distribution; however, this is not the case in natural granular flows where a variety of grain sizes, known as polydispersity, is a common feature. In this work, we study the effect of polydispersity, and of the inherent changes that polydispersity causes in the initial packing fraction, in dry and immersed columns. We show that dry columns are not significantly affected by polydispersity, reaching similar distances at similar times. In contrast, immersed columns are strongly affected by the polydispersity and packing fraction, and the collapse sequence is linked to changes of the basal pore fluid pressure $P$. At the collapse initiation, negative changes of $P$ beneath the column produce a temporary increase of the column strength. The negative change of $P$ lasts longer in polydisperse columns than in monodisperse columns, delaying the collapse sequence. Conversely, during the column spreading, positive changes of $P$ lead to a decrease of the shear strength. For polydisperse collapses, the excess of $P$ lasts longer, allowing the material to reach farther distances, compared with the collapses of monodisperse materials. Finally, we show that a mobility model that scales the final runout with the collapse kinetic energy remains true for different polydispersity levels in a three-dimensional configuration, capturing the scaling between the micro to macro controlling features.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S.S., Martinez, A. & DeJong, J.T. 2023 Effect of gradation on the strength and stress-dilation behavior of coarse-grained soils in drained and undrained triaxial compression. J. Geotech. Geoenviron. Engng 149 (5), 04023019.CrossRefGoogle Scholar
Balmforth, N.J. & Kerswell, R.R. 2005 Granular collapse in two dimensions. J. Fluid Mech. 538, 399428.CrossRefGoogle Scholar
Bougouin, A. & Lacaze, L. 2018 Granular collapse in a fluid: different flow regimes for an initially dense-packing. Phys. Rev. Fluids 3, 064305.CrossRefGoogle Scholar
Bougouin, A., Lacaze, L. & Bonometti, T. 2017 Collapse of a neutrally buoyant suspension column: from Newtonian to apparent non-Newtonian flow regimes. J. Fluid Mech. 826, 918941.CrossRefGoogle Scholar
Breard, E.C.P., Dufek, J., Fullard, L. & Carrara, A. 2020 The basal friction coefficient of granular flows with and without excess pore pressure: implications for pyroclastic density currents, water-rich debris flows, and rock and submarine avalanches. J. Geophys. Res. Solid Earth 125 (12), e2020JB020203.CrossRefGoogle Scholar
Breard, E.C.P., Dufek, J. & Roche, O. 2019 Continuum modeling of pressure-balanced and fluidized granular flows in 2-D: comparison with glass bead experiments and implications for concentrated pyroclastic density currents. J. Geophys. Res. Solid Earth 124 (6), 55575583.CrossRefGoogle Scholar
Cabrera, M. & Estrada, N. 2019 Granular column collapse: analysis of grain-size effects. Phys. Rev. E 99, 012905.CrossRefGoogle ScholarPubMed
Cabrera, M. & Estrada, N. 2021 Is the grain size distribution a key parameter for explaining the long runout of granular avalanches? J. Geophys. Res. Solid Earth 126 (9), e2021JB022589.CrossRefGoogle Scholar
Cantor, D., Azéma, E. & Preechawuttipong, I. 2020 Microstructural analysis of sheared polydisperse polyhedral grains. Phys. Rev. E 101, 062901.CrossRefGoogle ScholarPubMed
Cantor, D., Azéma, E., Sornay, P. & Radjai, F. 2018 Rheology and structure of polydisperse three-dimensional packings of spheres. Phys. Rev. E 98, 052910.CrossRefGoogle Scholar
Carman, P.C. 1937 Fluid flow through granular beds. Chem. Engng Res. Des. 75, S32S48.CrossRefGoogle Scholar
Courrech du Pont, S., Gondret, P., Perrin, B. & Rabaud, M. 2003 Granular avalanches in fluids. Phys. Rev. Lett. 90, 044301.CrossRefGoogle ScholarPubMed
Dahl, S.R., Clelland, R. & Hrenya, C.M. 2003 Three-dimensional, rapid shear flow of particles with continuous size distributions. Powder Technol. 138 (1), 712, World Congress of Particle Technology.CrossRefGoogle Scholar
Degaetano, M., Lacaze, L. & Phillips, J.C. 2013 The influence of localised size reorganisation on short-duration bidispersed granular flows. Eur. Phys. J. E 36, 19.CrossRefGoogle ScholarPubMed
Di Felice, R. 1994 The voidage function for fluid–particle interaction systems. Intl J. Multiphase Flow 20 (1), 153159.CrossRefGoogle Scholar
Gee, M.J.R., Masson, D.G., Watts, A.B. & Allen, P.A. 1999 The Saharan debris flow: an insight into the mechanics of long runout submarine debris flows. Sedimentology 46, 317335.CrossRefGoogle Scholar
Gray, J.M.N.T. & Ancey, C. 2011 Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535588.CrossRefGoogle Scholar
Guo, X., Stoesser, T., Zheng, D., Luo, Q., Liu, X. & Nian, T. 2023 A methodology to predict the run-out distance of submarine landslides. Comput. Geotech. 153, 105073.CrossRefGoogle Scholar
He, K., Shi, H. & Yu, X. 2021 An experimental study on aquatic collapses of bidisperse granular deposits. Phys. Fluids 33 (10), 103311.CrossRefGoogle Scholar
Ilstad, T., Marr, J.G., Elverhøi, A. & Harbitz, C.B. 2004 Laboratory studies of subaqueous debris flows by measurements of pore–fluid pressure and total stress. Mar. Geol. 213 (1), 403414.CrossRefGoogle Scholar
Iverson, R.M. 1997 The physics of debris flows. Rev. Geophys. 35 (3), 245296.CrossRefGoogle Scholar
Iverson, R.M. 2005 Regulation of landslide motion by dilatancy and pore pressure feedback. J. Geophys. Res. Earth Surf. 110 (F2), F02015.CrossRefGoogle Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.CrossRefGoogle Scholar
Kaitna, R., Palucis, M.C., Yohannes, B., Hill, K.M. & Dietrich, W.E. 2016 Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows. J. Geophys. Res. Earth Surf. 121 (2), 415441.CrossRefGoogle Scholar
Lacaze, L., Bouteloup, J., Fry, B. & Izard, E. 2021 Immersed granular collapse: from viscous to free-fall unsteady granular flows. J. Fluid Mech. 912, A15.CrossRefGoogle Scholar
Lai, Z., Vallejo, L.E., Zhou, W., Ma, G., Espitia, J.M., Caicedo, B. & Chang, X. 2017 Collapse of granular columns with fractal particle size distribution: implications for understanding the role of small particles in granular flows. Geophys. Res. Lett. 44 (24), 1218112189.CrossRefGoogle Scholar
Lajeunesse, E., Monnier, J.B. & Homsy, G.M. 2005 Granular slumping on a horizontal surface. Phys. Fluids 17 (10), 103302.CrossRefGoogle Scholar
Lee, C.-H. 2021 Two-phase modelling of submarine granular flows with shear-induced volume change and pore-pressure feedback. J. Fluid Mech. 907, A31.CrossRefGoogle Scholar
Lube, G., Huppert, H.E., Sparks, R.S.J. & Hallworth, M.A. 2004 Axisymmetric collapses of granular columns. J. Fluid Mech. 508, 175199.CrossRefGoogle Scholar
Martinez, F., Tamburrino, A., Casis, V. & Ferrer, P. 2022 Segregation effects on flow's mobility and final morphology of axisymmetric granular collapses. Granul. Matt. 24 (4), 101.CrossRefGoogle Scholar
Meruane, C., Tamburrino, A. & Roche, O. 2010 On the role of the ambient fluid on gravitational granular flow dynamics. J. Fluid Mech. 648, 381404.CrossRefGoogle Scholar
Meruane, C., Tamburrino, A. & Roche, O. 2012 Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid. Phys. Rev. E 86, 026311.CrossRefGoogle Scholar
Nguyen, D.-H., Azéma, E., Radjai, F. & Sornay, P. 2014 Effect of size polydispersity versus particle shape in dense granular media. Phys. Rev. E 90, 012202.CrossRefGoogle ScholarPubMed
Nguyen, D.-H., Azéma, E., Sornay, P. & Radjai, F. 2015 Effects of shape and size polydispersity on strength properties of granular materials. Phys. Rev. E 91, 032203.CrossRefGoogle ScholarPubMed
Oquendo-Patiño, W.F. & Estrada, N. 2022 Finding the grain size distribution that produces the densest arrangement in frictional sphere packings: revisiting and rediscovering the century-old Fuller and Thompson distribution. Phys. Rev. E 105, 064901.CrossRefGoogle ScholarPubMed
Pailha, M., Nicolas, M. & Pouliquen, O. 2008 Initiation of underwater granular avalanches: influence of the initial volume fraction. Phys. Fluids 20 (11), 111701.CrossRefGoogle Scholar
Phillips, J.C., Hogg, A.J., Kerswell, R.R. & Thomas, N.H. 2006 Enhanced mobility of granular mixtures of fine and coarse particles. Earth Planet. Sci. Lett. 246 (3), 466480.CrossRefGoogle Scholar
Pinzon, G. & Cabrera, M. 2019 Planar collapse of a submerged granular column. Phys. Fluids 31 (8), 086603.CrossRefGoogle Scholar
Pinzón, G. & Cabrera, M.A. 2019 Submerged planar granular column collapse: fluid fluxes at the collapsing granular front. In Proceedings of the Seventh International Conference on Debris-Flow Hazards Mitigation, special publication 28. Association of Environmental and Engineering Geologists.Google Scholar
Polanía, O., Cabrera, M., Renouf, M. & Azéma, E. 2022 Collapse of dry and immersed polydisperse granular columns: a unified runout description. Phys. Rev. Fluids 7, 084304.CrossRefGoogle Scholar
Polanía, O., Cabrera, M., Renouf, M., Azéma, E. & Estrada, N. 2023 Grain size distribution does not affect the residual shear strength of granular materials: an experimental proof. Phys. Rev. E 107, L052901.CrossRefGoogle Scholar
Prada-Sarmiento, L.F., Cabrera, M.A., Camacho, R., Estrada, N. & Ramos-Cañón, A.M. 2019 The Mocoa Event on March 31 (2017): analysis of a series of mass movements in a tropical environment of the Andean-Amazonian Piedmont. Landslides 16, 24592468.CrossRefGoogle Scholar
Rauter, M. 2021 The compressible granular collapse in a fluid as a continuum: validity of a Navier–Stokes model with $\mu (\,j)$, $\phi (\,j)$-rheology. J. Fluid Mech. 915, A87.CrossRefGoogle Scholar
Roche, O., Attali, M., Mangeney, A. & Lucas, A. 2011 On the run-out distance of geophysical gravitational flows: insight from fluidized granular collapse experiments. Earth Planet. Sci. Lett. 311 (3), 375385.CrossRefGoogle Scholar
Roche, O., Gilbertson, M.A., Phillips, J.C. & Sparks, R.S.J. 2005 Inviscid behaviour of fines-rich pyroclastic flows inferred from experiments on gas–particle mixtures. Earth Planet. Sci. Lett. 240 (2), 401414.CrossRefGoogle Scholar
Rondon, L., Pouliquen, O. & Aussillous, P. 2011 Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23 (7), 073301.CrossRefGoogle Scholar
Sarlin, W., Morize, C., Sauret, A. & Gondret, P. 2021 Collapse dynamics of dry granular columns: from free-fall to quasistatic flow. Phys. Rev. E 104, 064904.CrossRefGoogle ScholarPubMed
Scott, G.D. 1960 Packing of spheres: packing of equal spheres. Nature 188 (4754), 908909.CrossRefGoogle Scholar
Staron, L. & Hinch, E.J. 2005 Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 127.CrossRefGoogle Scholar
Staron, L. & Hinch, E.J. 2007 The spreading of a granular mass: role of grain properties and initial conditions. Granul. Matt. 9, 205217.CrossRefGoogle Scholar
Sufian, A., Knight, C., O'Sullivan, C., van Wachem, B. & Dini, D. 2019 Ability of a pore network model to predict fluid flow and drag in saturated granular materials. Comput. Geotech. 110, 344366.CrossRefGoogle Scholar
Thompson, E.L. & Huppert, H.E. 2007 Granular column collapses: further experimental results. J. Fluid Mech. 575, 177186.CrossRefGoogle Scholar
Topin, V., Monerie, Y., Perales, F. & Radjaï, F. 2012 Collapse dynamics and runout of dense granular materials in a fluid. Phys. Rev. Lett. 109, 188001.CrossRefGoogle Scholar
Wang, C., Wang, Y., Peng, C. & Meng, X. 2017 Dilatancy and compaction effects on the submerged granular column collapse. Phys. Fluids 29 (10), 103307.CrossRefGoogle Scholar
Warnett, J.M., Denissenko, P., Thomas, P.J., Kiraci, E. & Williams, M.A. 2014 Scalings of axisymmetric granular column collapse. Granul. Matt. 16, 115124.CrossRefGoogle Scholar
Watanabe, D., Moriguchi, S. & Terada, K. 2022 A numerical study on the effects of particle size distribution on run-out distance of granular flow. Soils Found. 62 (6), 101242.CrossRefGoogle Scholar
Yang, G.C., Jing, L., Kwok, C.Y. & Sobral, Y.D. 2020 Pore-scale simulation of immersed granular collapse: implications to submarine landslides. J. Geophys. Res. Earth Surf. 125 (1), e2019JF005044.CrossRefGoogle Scholar
Zenit, R. 2005 Computer simulations of the collapse of a granular column. Phys. Fluids 17 (3), 031703.CrossRefGoogle Scholar
Supplementary material: File

Polanía et al. supplementary movie 1

Immersed granular column collapse with polydispersity λ = 1.0 and Aspect Ratio 1.0.
Download Polanía et al. supplementary movie 1(File)
File 4 MB
Supplementary material: File

Polanía et al. supplementary movie 2

Immersed granular column collapse with polydispersity λ = 20.0 and Aspect Ratio 1.0.
Download Polanía et al. supplementary movie 2(File)
File 4.7 MB
Supplementary material: File

Polanía et al. supplementary movie 3

Dry granular column collapse with polydispersity λ = 1.0 and Aspect Ratio 2.0.
Download Polanía et al. supplementary movie 3(File)
File 5.3 MB
Supplementary material: File

Polanía et al. supplementary movie 4

Dry granular column collapse with polydispersity λ = 20.0 and Aspect Ratio 2.0.
Download Polanía et al. supplementary movie 4(File)
File 5.6 MB
Supplementary material: File

Polanía et al. supplementary movie 5

Immersed granular column collapse with polydispersity λ = 1.0 and Aspect Ratio 2.0.
Download Polanía et al. supplementary movie 5(File)
File 8 MB
Supplementary material: File

Polanía et al. supplementary movie 6

Immersed granular column collapse with polydispersity λ = 20.0 and Aspect Ratio 2.0.
Download Polanía et al. supplementary movie 6(File)
File 12.8 MB
Supplementary material: File

Polanía et al. supplementary material 7

Polanía et al. supplementary material
Download Polanía et al. supplementary material 7(File)
File 4.8 KB