Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-14T10:07:18.288Z Has data issue: false hasContentIssue false

Perfect active absorption of water waves in a channel by a dipole source

Published online by Cambridge University Press:  12 August 2024

Léo-Paul Euvé*
Affiliation:
Lab. de Physique et Mécanique des Milieux Hétérogènes (PMMH), ESPCI-PSL, CNRS, Sorbonne University, Univ. Paris Cité, 7 quai Saint Bernard, 75005 Paris, France
Kim Pham
Affiliation:
LMI, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France
Philippe Petitjeans
Affiliation:
Lab. de Physique et Mécanique des Milieux Hétérogènes (PMMH), ESPCI-PSL, CNRS, Sorbonne University, Univ. Paris Cité, 7 quai Saint Bernard, 75005 Paris, France
Vincent Pagneux
Affiliation:
Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique – Graduate School (IA-GS), CNRS, 72085 Le Mans Université, France
Agnès Maurel
Affiliation:
Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
*
Email address for correspondence: leo-paul.euve@espci.fr

Abstract

This study investigates the potential use of an active device to efficiently absorb water waves propagating in a channel. The active device comprises a dipole source consisting of two sources in quasi-opposition of phase. We explore the feasibility of this approach to achieve perfect absorption of guided waves through interference phenomena. To accomplish this, we establish the law governing the waves emitted by the dipole source to optimize the absorption of specific incident waves. The validity of this law is demonstrated through numerical simulations and laboratory experiments, encompassing both the harmonic and transient regimes of the experimental set-up.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barman, K.K. & Bora, S.N. 2021 Linear water wave interaction with a composite porous structure in a two-layer fluid flowing over a step-like sea-bed. Geophys. Astrophys. Fluid Dyn. 115 (5–6), 577611.CrossRefGoogle Scholar
van den Brekel, E. 2021 Hydrodynamic and ecological performance of a new modular unit for living breakwaters: wave flume experiments and results. PhD thesis, TU Delft Civil Engineering and Geosciences.Google Scholar
Cobelli, P.J., Maurel, A., Pagneux, V. & Petitjeans, P. 2009 Global measurement of water waves by Fourier transform profilometry. Exp. Fluids 46 (6), 10371047.CrossRefGoogle Scholar
Euvé, L.-P., Pham, K., Porter, R., Petitjeans, P., Pagneux, V. & Maurel, A. 2023 Perfect resonant absorption of guided water waves by Autler–Townes splitting. Phys. Rev. Lett. 131 (20), 204002.CrossRefGoogle ScholarPubMed
van Gent, M., Buis, L., van den Bos, J.P. & Wüthrich, D. 2023 Wave transmission at submerged coastal structures and artificial reefs. Coast. Engng 184, 104344.CrossRefGoogle Scholar
Guo, B. & Ringwood, J.V. 2021 A review of wave energy technology from a research and commercial perspective. IET Renew. Power Gen. 15 (14), 30653090.CrossRefGoogle Scholar
Jin, S. & Greaves, D. 2021 Wave energy in the UK: status review and future perspectives. Renew. Sust. Energ. Rev. 143, 110932.CrossRefGoogle Scholar
Maurel, A., Cobelli, P., Pagneux, V. & Petitjeans, P. 2009 Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry. Appl. Opt. 48 (2), 380392.CrossRefGoogle ScholarPubMed
van der Meer, J.W., Briganti, R., Zanuttigh, B. & Wang, B. 2005 Wave transmission and reflection at low-crested structures: design formulae, oblique wave attack and spectral change. Coast. Engng 52 (10–11), 915929.CrossRefGoogle Scholar
Milgram, J.H. 1965 Compliant water wave absorbers. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Milgram, J.H. 1970 Active water-wave absorbers. J. Fluid Mech. 42 (4), 845859.CrossRefGoogle Scholar
Przadka, A., Cabane, B., Pagneux, V., Maurel, A. & Petitjeans, P. 2012 Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface? Exp. Fluids 52, 519527.CrossRefGoogle Scholar
Salter, S.H. 1974 Wave power. Nature 249 (5459), 720724.CrossRefGoogle Scholar
Schäffer, H.A. & Klopman, G. 2000 Review of multidirectional active wave absorption methods. ASCE J. Waterway Port Coastal Ocean Engng 126 (2), 8897.CrossRefGoogle Scholar
Silva, R., Salles, P. & Palacio, A. 2002 Linear waves propagating over a rapidly varying finite porous bed. Coast. Engng 44 (3), 239260.CrossRefGoogle Scholar
Sollitt, C.K. & Cross, R.H. 1972 Wave transmission through permeable breakwaters. In Coastal Engineering 1972, pp. 1827–1846. ASCE.CrossRefGoogle Scholar
Zhu, S. 2001 Water waves within a porous medium on an undulating bed. Coast. Engng 42 (1), 87101.CrossRefGoogle Scholar