Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-01T04:35:56.520Z Has data issue: false hasContentIssue false

On the role of viscoelasticity in mucociliary clearance: a hydrodynamic continuum approach

Published online by Cambridge University Press:  21 September 2023

Anjishnu Choudhury*
Affiliation:
Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
Marcel Filoche
Affiliation:
INSERM U955, CNRS, ERM7000, Université Paris-Est Créteil Val de Marne, 94000 Créteil, France Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
Neil M. Ribe
Affiliation:
Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
Nicolas Grenier
Affiliation:
Université Paris-Saclay, CNRS, LISN, 91405 Orsay, France
Georg F. Dietze
Affiliation:
Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
*
Email address for correspondence: anjishnu.choudhury@espci.fr

Abstract

We present numerical and analytical predictions of mucociliary clearance based on the continuum description of a viscoelastic mucus film, where momentum transfer from the beating cilia is represented via a Navier-slip boundary condition introduced by Bottier et al. (PLoS Comput. Biol., vol. 13, issue 7, 2017a, e1005552). Mucus viscoelasticity is represented via the Oldroyd-B model, where the relaxation time and the viscosity ratio have been fitted to experimental data for the storage and loss moduli of different types of real mucus, ranging from healthy to diseased conditions. We solve numerically the fully nonlinear governing equations for inertialess flow, and develop analytical solutions via asymptotic expansion in two limits: (i) weak viscoelasticity, i.e. low Deborah number; (ii) low cilia beat amplitude (CBA). All our approaches predict a drop in the mucus flow rate in relation to the Newtonian reference value, as the cilia beat frequency is increased. This relative drop increases with decreasing CBA and slip length. In diseased conditions, e.g. mucus properties characteristic of cystic fibrosis, the drop reaches 30 % in the physiological frequency range. In the case of healthy mucus, no significant drop is observed, even at very high frequency. This contrasts with the deterioration of microorganism propulsion predicted by the low-amplitude theory of Lauga (Phys. Fluids, vol. 19, issue 8, 2007, 083104), and is due to the larger beat amplitude and slip length associated with mucociliary clearance. In the physiological range of the cilia beat frequency, the low-amplitude prediction is accurate for both healthy and diseased conditions. Finally, we find that shear-thinning, modelled via a multi-mode Giesekus model, does not significantly alter our weakly viscoelastic and low-amplitude predictions based on the Oldroyd-B model.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angeles, V., Godínez, F.A., Puente-Velazquez, J.A., Mendez-Rojano, R., Lauga, E. & Zenit, R. 2021 Front–back asymmetry controls the impact of viscoelasticity on helical swimming. Phys. Rev. Fluids 6, 043102.CrossRefGoogle Scholar
Bell, J.B., Colella, P. & Glaz, H.M. 1989 A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85, 257283.CrossRefGoogle Scholar
Bird, R.B., Armstrong, R.C. & Hassager, O. 1987 Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics. John Wiley and Sons Inc.Google Scholar
Blake, J. 1973 Mucus flows. Math. Biosci. 17 (3–4), 301313.CrossRefGoogle Scholar
Bottier, M., Peña Fernández, M., Pelle, G., Isabey, D., Louis, B., Grotberg, J.B. & Filoche, M. 2017 a A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part II, modeling. PLoS Comput. Biol. 13 (7), e1005552.CrossRefGoogle Scholar
Bottier, M., et al. 2017 b A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part I, experimental analysis. PLoS Comput. Biol. 13 (7), e1005605.CrossRefGoogle Scholar
Bottier, M., et al. 2022 Characterization of ciliary function in bronchiectasis (EMBARC-BRIDGE study). In A62. Cystic Fibrosis and Non-CF Bronchiectasis: Mechanistic Insights, p. A2000. American Thoracic Society.CrossRefGoogle Scholar
Button, B., Cai, L.-H., Ehre, C., Kesimer, M., Hill, D.B., Sheehan, J.K., Boucher, R.C. & Rubinstein, M. 2012 A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337 (6097), 937941.CrossRefGoogle ScholarPubMed
Carreau, P.J., De Kee, D. & Daroux, M. 1979 An analysis of the viscous behaviour of polymeric solutions. Can. J. Chem. Engng 57 (2), 135140.CrossRefGoogle Scholar
Chatelin, R., Anne-Archard, D., Murris-Espin, M., Thiriet, M. & Poncet, P. 2017 Numerical and experimental investigation of mucociliary clearance breakdown in cystic fibrosis. J. Biomech. 53, 5663.CrossRefGoogle ScholarPubMed
Choudhury, A., Dey, M., Dixit, H.N. & Feng, J.J. 2021 Tear-film breakup: the role of membrane-associated mucin polymers. Phys. Rev. E 103, 013108.CrossRefGoogle ScholarPubMed
Fahy, J.V. & Dickey, B.F. 2010 Airway mucus function and dysfunction. N. Engl. J. Med. 363 (23), 22332247.CrossRefGoogle ScholarPubMed
Fattal, R. & Kupferman, R. 2005 Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126 (12), 2337.CrossRefGoogle Scholar
Filoche, M., Tai, C.-F. & Grotberg, J.B. 2015 Three-dimensional model of surfactant replacement therapy. Proc. Natl Acad. Sci. USA 112 (30), 92879292.CrossRefGoogle ScholarPubMed
Fulford, G.R. & Blake, J.R. 1986 Muco-ciliary transport in the lung. J. Theor. Biol. 121 (4), 381402.CrossRefGoogle ScholarPubMed
Grotberg, J.B. 2021 Biofluid Mechanics: Analysis and Applications. Cambridge University Press.CrossRefGoogle Scholar
Guo, H. & Kanso, E. 2017 A computational study of mucociliary transport in healthy and diseased environments. Eur. J. Comput. Mech. 26 (1–2), 430.CrossRefGoogle Scholar
Halpern, D., Fujioka, H. & Grotberg, J.B. 2010 The effect of viscoelasticity on the stability of a pulmonary airway liquid layer. Phys. Fluids 22, 011901.CrossRefGoogle ScholarPubMed
Hill, D.B., et al. 2014 A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease. PLoS ONE 9 (2), e87681.CrossRefGoogle ScholarPubMed
Jory, M., Donnarumma, D., Blanc, C., Bellouma, K., Fort, A., Vachier, I., Casanellas, L., Bourdin, A. & Massiera, G. 2022 Mucus from human bronchial epithelial cultures: rheology and adhesion across length scales. Interface Focus 12 (6), 20220028.CrossRefGoogle ScholarPubMed
Lauga, E. 2007 Propulsion in a viscoelastic fluid. Phys. Fluids 19 (8), 083104.CrossRefGoogle Scholar
Lauga, E. 2020 The Fluid Dynamics of Cell Motility. Cambridge University Press.CrossRefGoogle Scholar
Levy, R., Hill, D.B., Forest, M.G. & Grotberg, J.B. 2014 Pulmonary fluid flow challenges for experimental and mathematical modeling. Integr. Compar. Biol. 54 (6), 9851000.CrossRefGoogle ScholarPubMed
Loiseau, E., Gsell, S., Nommick, A., Jomard, C., Gras, D., Chanez, P., D'Ortona, U., Kodjabachian, L., Favier, J. & Viallat, A. 2020 Active mucus–cilia hydrodynamic coupling drives self-organization of human bronchial epithelium. Nat. Phys. 16 (11), 11581164.CrossRefGoogle Scholar
López-Herrera, J.M., Popinet, S. & Castrejón-Pita, A. 2019 An adaptive solver for viscoelastic incompressible two-phase problems applied to the study of the splashing of weakly viscoelastic droplets. J. Non-Newtonian Fluid Mech. 264, 144158.CrossRefGoogle Scholar
Man, Y. & Lauga, E. 2015 Phase-separation models for swimming enhancement in complex fluids. Phys. Rev. E 92 (2), 023004.CrossRefGoogle ScholarPubMed
Mitran, S.M. 2007 Metachronal wave formation in a model of pulmonary cilia. Comput. Struct. 85 (11–14), 763774.CrossRefGoogle Scholar
Mitran, S.M., Forest, M.G., Yao, L., Lindley, B. & Hill, D.B. 2008 Extensions of the Ferry shear wave model for active linear and nonlinear microrheology. J. Non-Newtonian Fluid Mech. 154 (2–3), 120135.CrossRefGoogle ScholarPubMed
Modaresi, M.A. & Shirani, E. 2022 Effects of continuous and discrete boundary conditions on the movement of upper-convected Maxwell and Newtonian mucus layers in coughing and sneezing. Eur. Phys. J. Plus 137 (7), 846.CrossRefGoogle ScholarPubMed
Ortín, J. 2020 Stokes layers in oscillatory flows of viscoelastic fluids. Phil. Trans. R. Soc. Lond. A 378 (2174), 20190521.Google ScholarPubMed
Popinet, S. 2015 A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336358.CrossRefGoogle Scholar
Popinet, S. & collaborators 2013–2020 Basilisk. http://basilisk.fr.Google Scholar
Riley, E.E. & Lauga, E. 2015 Small-amplitude swimmers can self-propel faster in viscoelastic fluids. J. Theor. Biol. 382, 345355.CrossRefGoogle ScholarPubMed
Romano, F., Muradoglu, M., Fujioka, H. & Grotberg, J.B. 2021 The effect of viscoelasticity in an airway closure model. J. Fluid Mech. 913, A31.CrossRefGoogle Scholar
Sedaghat, M.H., Behnia, M. & Abouali, O. 2023 Nanoparticle diffusion in respiratory mucus influenced by mucociliary clearance: a review of mathematical modeling. J. Aerosol Med. Pulm. Drug. Deliv. 36 (3), 127–143.CrossRefGoogle ScholarPubMed
Sedaghat, M.H., Farnoud, A., Schmid, O. & Abouali, O. 2022 Nonlinear simulation of mucociliary clearance: a three-dimensional study. J. Non-Newtonian Fluid Mech. 300, 104727.CrossRefGoogle Scholar
Sedaghat, M.H., Shahmardan, M.M., Norouzi, M. & Heydari, M. 2016 Effect of cilia beat frequency on muco-ciliary clearance. J. Biomed. Phys. Engng 6 (4), 265278.Google ScholarPubMed
Siginer, D.A. 2014 Stability of Non-Linear Constitutive Formulations for Viscoelastic Fluids. Springer.CrossRefGoogle Scholar
Smith, D.J., Gaffney, E.A. & Blake, J.R. 2007 A viscoelastic traction layer model of muco-ciliary transport. Bull. Math. Biol. 69 (1), 289327.CrossRefGoogle ScholarPubMed
Spagnolie, S.E. (Ed.) 2015 Complex Fluids in Biological Systems – Experiment, Theory, and Computation. Springer.CrossRefGoogle Scholar
Vanaki, S.M., Holmes, D., Saha, S.C., Chen, J., Brown, R.J. & Jayathilake, P.G. 2020 Muco-ciliary clearance: a review of modelling techniques. J. Biomech. 99, 109578.CrossRefGoogle Scholar
Vasquez, P.A., Jin, Y., Palmer, E., Hill, D. & Forest, M.G. 2016 Modeling and simulation of mucus flow in human bronchial epithelial cell cultures – Part I: idealized axisymmetric swirling flow. PLoS Comput. Biol. 12 (8), e1004872.CrossRefGoogle ScholarPubMed
Supplementary material: File

Choudhury et al. supplementary material

Choudhury et al. supplementary material

Download Choudhury et al. supplementary material(File)
File 120.3 KB