Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T23:38:06.918Z Has data issue: false hasContentIssue false

On the inviscid instability of certain two-dimensional vortex-type flows

Published online by Cambridge University Press:  28 March 2006

Alfons Michalke
Affiliation:
Deutsche Versuchsanstalt für Luft- und Raumfahrt e. V. Institut für Turbulenzforschung, Berlin
Adalbert Timme
Affiliation:
Deutsche Versuchsanstalt für Luft- und Raumfahrt e. V. Institut für Turbulenzforschung, Berlin

Abstract

As a contribution to the breakdown phenomenon of vortices in a two-dimensional free boundary layer, this paper deals with the question whether a single cylindrical (i.e. two-dimensional) vortex can become unstable. For this reason a single vortex, as it occurs in a free boundary layer, is approximated by an axisymmetrical vortex model. The inviscid stability theory of rotating fluids is then applied to this vortex model. By general stability criteria it was found that a vortex consisting of vorticity of one sign only is stable according to the Rayleigh criterion, but, if the vorticity has an extremum value outside the axis, may become unstable with respect to cylindrical disturbances. Furthermore, stability calculations for three special types of vortex were performed. It was found that they were more unstable with respect to cylindrical disturbances than to three-dimensional ones.

Type
Research Article
Copyright
© 1967 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1962 J. Fluid Mech. 14, 593629.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press.
Domm, U. 1956 Deutsche Versuchsanstalt für Luftfahrt, Porz-Wahn, DVL Rept. no. 26.Google Scholar
Fabian, H. 1960 Deutsche Versuchsanstalt für Luftfahrt Porz-Wahn, DVL-Rept. no. 122.Google Scholar
Freymuth, P. 1966 J. Fluid Mech. 25, 683706.
Howard, L. N. & Gupta, A. S. 1962 J. Fluid Mech. 14, 46376.
Hummel, C. 1964 ‘Deutsche Luft- und Raumfahrt. FB 64–12.
Hummel, D. 1965 Z. Flugwiss. 13, 15868.
Ludwieg, H. 1960 Z. Flugwiss. 8, 13540.
Ludwieg, H. 1964 Z. Flugwiss. 12, 3049.
Michalke, A. 1965a J. Fluid Mech. 22, 37183.
Michalke, A. 1965b J. Fluid Mech. 23, 52144.
Michalke, A. & Freymuth, P. 1966 AGARD conference Proc. no. 4. Separated Flows, part II, pp. 57595.
Michalke, A. & Schade, H. 1963 Ing. Arch. 33, 123.
Michalke, A. & Wille, R. 1966 Applied Mechanics, Proc. 11th Intern. Congr. Appl. Mech. Munich 1964, pp. 96272, ed. H. Görtler. Berlin-Heidelberg-New York: Springer-Verlag.
Rayleigh, Lord 1880 Sci. Papers 1, pp. 47487. Cambridge University Press.
Rayleigh, Lord 1917 Proc. Roy. Soc A 93, 14854.
Sato, H. 1960 J. Fluid Mech. 7, 5380.
Schade, H. & Michalke, A. 1962 Z. Flugwiss. 10, 14754.
Squire, H. B. 1933 Proc. Roy. Soc. A 142, 62128.
Taylor, G. I. 1923 Phil. Trans A 223, 289343.
Timme, A. 1957 Ing. Arch. 25, 20525.
Wehrmann, O. & Wille, R. 1958 Boundary Layer Research, ed. H. Görtler, pp. 387404. Berlin-Göttingen-Heidelberg: Springer-Verlag.
Weske, J. R. & Rankin, T. M. 1963 Phys. Fluids 6, 13971403.
Wille, R. 1952 Jb. schiffbautechn. Ges. 46, pp. 17487.