Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T10:46:13.421Z Has data issue: false hasContentIssue false

On a unified breaking onset threshold for gravity waves in deep and intermediate depth water

Published online by Cambridge University Press:  23 February 2018

X. Barthelemy*
Affiliation:
School of Mathematics and Statistics, UNSW Sydney, NSW 2052, Australia Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Sydney, 110 King Street, Manly Vale, NSW 2093, Australia
M. L. Banner
Affiliation:
School of Mathematics and Statistics, UNSW Sydney, NSW 2052, Australia
W. L. Peirson
Affiliation:
Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Sydney, 110 King Street, Manly Vale, NSW 2093, Australia
F. Fedele
Affiliation:
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
M. Allis
Affiliation:
National Institute of Water and Atmospheric Research, Hamilton 3216, New Zealand
F. Dias
Affiliation:
School of Mathematics and Statistics, University College Dublin, Ireland
*
Email address for correspondence: x.barthelemy@unsw.edu.au

Abstract

We revisit the classical but as yet unresolved problem of predicting the breaking onset of 2D and 3D irrotational gravity water waves. Based on a fully nonlinear 3D boundary element model, our numerical simulations investigate geometric, kinematic and energetic differences between maximally tall non-breaking waves and marginally breaking waves in focusing wave groups. Our study focuses initially on unidirectional domains with flat bottom topography and conditions ranging from deep to intermediate depth (depth to wavelength ratio from 1 to 0.2). Maximally tall non-breaking (maximally recurrent) waves are clearly separated from marginally breaking waves by their normalised energy fluxes localised near the crest tip region. The initial breaking instability occurs within a very compact region centred on the wave crest. On the surface, this reduces to the local ratio of the energy flux velocity (here the fluid velocity) to the crest point velocity for the tallest wave in the evolving group. This provides a robust threshold parameter for breaking onset for 2D wave packets propagating in uniform water depths from deep to intermediate. Further targeted study of representative cases of the most severe laterally focused 3D wave packets in deep and intermediate depth water shows that the threshold remains robust. These numerical findings for 2D and 3D cases are closely supported by our companion observational results. Warning of imminent breaking onset is detectable up to a fifth of a carrier wave period prior to a breaking event.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allis, M.2013 The speed, breaking onset and energy dissipation of 3d deep-water waves. PhD thesis, School of Civil and Environmental Engineering, Faculty of Engineering, UNSW. http://unsworks.unsw.edu.au/fapi/datastream/unsworks:12360/SOURCE02?view=true.Google Scholar
Baker, G. R., Meiron, D. I. & Orszag, S. A. 1982 Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123, 477501.CrossRefGoogle Scholar
Banner, M. L., Barthelemy, X., Fedele, F., Allis, M., Benetazzo, A., Dias, F. & Peirson, W. L. 2014 Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior. Phys. Rev. Lett. 112, 114502.CrossRefGoogle ScholarPubMed
Banner, M. L. & Peirson, W. L. 2007 Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech. 585, 93115.CrossRefGoogle Scholar
Banner, M. L. & Tian, X. 1998 On the determination of the onset of breaking for modulating surface gravity water waves. J. Fluid Mech. 367, 107137.CrossRefGoogle Scholar
Barthelemy, X., Banner, M. L., Peirson, W. L., Dias, F. & Allis, M.2015 On the local properties of highly nonlinear unsteady gravity water waves. Part 1. Slowdown, kinematics and energetics. arXiv:1508.06001.Google Scholar
Bateman, W. J. D., Swan, C. & Taylor, P. H. 2001 On the efficient numerical simulation of directionally spread surface water waves. J. Comput. Phys. 174 (1), 277305.CrossRefGoogle Scholar
Bridges, T. J. 2009 Wave breaking and the surface velocity field for three-dimensional water waves. Nonlinearity 22 (5), 947953.CrossRefGoogle Scholar
Chalikov, D. & Babanin, A. V. 2012 Simulation of wave breaking in one-dimensional spectral environment. J. Phys. Oceanogr. 42 (11), 17451761.CrossRefGoogle Scholar
Chang, K.-A. & Liu, P. L.-F. 1998 Velocity, acceleration and vorticity under a breaking wave. Phys. Fluids 10 (1), 327329.CrossRefGoogle Scholar
Clamond, D. & Grue, J. 2001 A fast method for fully nonlinear water-wave computations. J. Fluid Mech. 447, 337355.CrossRefGoogle Scholar
Craig, W. & Sulem, C. 1993 Numerical simulation of gravity waves. J. Comput. Phys. 108 (1), 7383.CrossRefGoogle Scholar
Dalrymple, R. A. 1989 Directional wavemaker theory with sidewall reflection. J. Hydraul. Res. 27 (1), 2334.CrossRefGoogle Scholar
Dalrymple, R. A. & Kirby, J. T. 1988 Models for very wide-angle water waves and wave diffraction. J. Fluid Mech. 192, 3350.CrossRefGoogle Scholar
Derakhti, M. & Kirby, J. T. 2016 Breaking-onset, energy and momentum flux in unsteady focused wave packets. J. Fluid Mech. 790, 553581.CrossRefGoogle Scholar
Dommermuth, D. G. & Yue, D. K. P. 1987 A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 267288.CrossRefGoogle Scholar
Ducrozet, G., Bonnefoy, F., Le Touze, D. & Ferrant, P. 2012 A modified high-order spectral method for wavemaker modeling in a numerical wave tank. Eur. J. Mech. (B/Fluids) 34, 1934.CrossRefGoogle Scholar
Duncan, J. H. 2001 Spilling breakers. Annu. Rev. Fluid Mech. 33 (1), 519547.CrossRefGoogle Scholar
Fedele, F. 2014 Geometric phases of water waves. Europhys. Lett. 107 (6), 69001.CrossRefGoogle Scholar
Fedele, F., Brennan, J., Ponce de León, S., Dudley, J. & Dias, F. 2016 Real world ocean rogue waves explained without the modulational instability. Sci. Rep. 6, 27715.CrossRefGoogle ScholarPubMed
Fochesato, C.2004 Modèles numériques pour les vagues et les ondes internes. PhD thesis, CMLA/Ecole Normale Superieure de Cachan.Google Scholar
Fochesato, C. & Dias, F. 2006 A fast method for nonlinear three-dimensional free-surface waves. Proc. R. Soc. Lond. A 462 (2073), 27152735.Google Scholar
Fochesato, C., Grilli, S. & Dias, F. 2007 Numerical modeling of extreme rogue waves generated by directional energy focusing. Wave Motion 44 (5), 395416.CrossRefGoogle Scholar
Fructus, D., Clamond, D., Grue, J. & Kristiansen, O. 2005 An efficient model for three-dimensional surface wave simulations. Part I. Free space problems. J. Comput. Phys. 205 (2), 665685.CrossRefGoogle Scholar
Grilli, S. T., Guyenne, P. & Dias, F. 2001 A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom. Intl J. Numer. Meth. Fluids 35 (7), 829867.3.0.CO;2-2>CrossRefGoogle Scholar
Grilli, S. T. & Horrillo, J. 1997 Numerical generation and absorption of fully nonlinear periodic waves. J. Engng Mech. 123 (10), 10601069.CrossRefGoogle Scholar
Grilli, S. T., Skourup, J. & Svendsen, I. A. 1989 An efficient boundary element method for nonlinear water waves. Engng Anal. Bound. Elem. 6 (2), 97107.CrossRefGoogle Scholar
Grilli, S. T. & Subramanya, R. 1994 Quasi-singular integrals in the modeling of nonlinear water waves in shallow water. Engng Anal. Bound. Elem. 13 (2), 181191.CrossRefGoogle Scholar
Grilli, S. T. & Subramanya, R. 1996 Numerical modeling of wave breaking induced by fixed or moving boundaries. Comput. Mech. 17 (6), 374391.CrossRefGoogle Scholar
Grilli, S. T. & Svendsen, I. A. 1990 Corner problems and global accuracy in the boundary element solution of nonlinear wave flows. Engng Anal. Bound. Elem. 7 (4), 178195.CrossRefGoogle Scholar
Guyenne, P. & Grilli, S. T. 2006 Numerical study of three-dimensional overturning waves in shallow water. J. Fluid Mech. 547, 361388.CrossRefGoogle Scholar
Hayami, K.1991 A projection transformation method for nearly singular surface boundary element integrals. PhD thesis, Computational mechanics institute, Wessex Institute of Technology, Southampton.CrossRefGoogle Scholar
Hayami, K. 2005 Variable transformations for nearly singular integrals in the boundary element method. Publ. Res. Inst. Math. Sci. 41, 821842.CrossRefGoogle Scholar
Hayami, K. & Matsumoto, H. 1994 A numerical quadrature for nearly singular boundary element integrals. Engng Anal. Bound. Elem. 13 (2), 143154.CrossRefGoogle Scholar
Holthuijsen, L. H. & Herbers, T. H. C. 1986 Statistics of breaking waves observed as whitecaps in the open sea. J. Phys. Oceanogr. 16 (2), 290297.2.0.CO;2>CrossRefGoogle Scholar
Hou, T. Y. A. & Zhang, P. B. 2002 Convergence of a boundary integral method for 3-d water waves. Discrete Continuous Dyn. Syst. B 2 (1), 134.CrossRefGoogle Scholar
Kurnia, R. & van Groesen, E. 2014 High order Hamiltonian water wave models with wave-breaking mechanism. Coast. Engng 93 (0), 5570.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1974 Breaking waves in deep or shallow water. In 10th Symposium on Naval Hydrodynamics, pp. 597605. MIT.Google Scholar
Ma, Q. 2010 Advances in Numerical Simulation of Nonlinear Water Waves. World Scientific.CrossRefGoogle Scholar
Ma, Q. W., Wu, G. X. & Eatock Taylor, R. 2001 Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. Part 1: methodology and numerical procedure. Intl J. Numer. Meth. Fluids 36 (3), 265285.CrossRefGoogle Scholar
Nicholls, D. P. 1998 Traveling water waves: spectral continuation methods with parallel implementation. J. Comput. Phys. 143 (1), 224240.CrossRefGoogle Scholar
Park, J. C., Kim, M. H., Miyata, H. & Chun, H. H. 2003 Fully nonlinear numerical wave tank (NWT) simulations and wave run-up prediction around 3-d structures. Ocean Engng 30 (15), 19691996.CrossRefGoogle Scholar
Perlin, M., Choi, W. & Tian, Z. 2013 Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech. 45 (1), 115145.CrossRefGoogle Scholar
Perlin, M., He, J. & Bernal, L. P. 1996 An experimental study of deep water plunging breakers. Phys. Fluids 8 (9), 23652374.CrossRefGoogle Scholar
Phillips, O. 1977 The Dynamics of the Upper Ocean, 2nd edn. Cambridge University Press.Google Scholar
Pomeau, Y., Berre, M. L., Guyenne, P. & Grilli, S. 2008 Wave-breaking and generic singularities of nonlinear hyperbolic equations. Nonlinearity 21 (5), T61.CrossRefGoogle Scholar
Qiao, H. & Duncan, J. H. 2001 Gentle spilling breakers: crest flow-field evolution. J. Fluid Mech. 439, 5785.CrossRefGoogle Scholar
Rapp, R. J. & Melville, W. K. 1990 Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond. A 331 (1622), 735800.Google Scholar
Saket, A.2017 Breaking for 2D and 3D gravity wave groups in deep and transitional water. PhD thesis, School of Civil and Environmental Engineering, Faculty of Engineering, UNSW. http://unsworks.unsw.edu.au/fapi/datastream/unsworks:45318/SOURCE02?view=true.Google Scholar
Saket, A., Peirson, W., Banner, M., Barthelemy, X. & Allis, M. 2017 Wave breaking onset of two-dimensional deep-water wave groups in the presence and absence of wind. J. Fluid Mech. 811, 642658.CrossRefGoogle Scholar
Saket, A., Peirson, W. L., Banner, M. L. & Allis, M. J. 2018 On the influence of wave breaking on the height limits of two-dimensional wave groups propagating in uniform intermediate depth water. Coast. Engng 133, 159165.CrossRefGoogle Scholar
Shemer, L. 2013 On kinematics of very steep waves. Nat. Hazards Earth Syst. Sci. 13 (8), 21012107.CrossRefGoogle Scholar
Shemer, L. & Ee, B. K. 2015 Steep unidirectional wave groups – fully nonlinear simulations versus experiments. Nonlinear Process. Geophys. 22 (6), 737747.CrossRefGoogle Scholar
Shemer, L. & Liberzon, D. 2014 Lagrangian kinematics of steep waves up to the inception of a spilling breaker. Phys. Fluids 26, 016601.CrossRefGoogle Scholar
Song, J.-B. & Banner, M. L. 2002 On determining the onset and strength of breaking for deep water waves. Part I: unforced irrotational wave groups. J. Phys. Oceanogr. 32 (9), 25412558.CrossRefGoogle Scholar
Stansell, P. & MacFarlane, C. 2002 Experimental investigation of wave breaking criteria based on wave phase speeds. J. Phys. Oceanogr. 32 (5), 12691283.2.0.CO;2>CrossRefGoogle Scholar
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441455.Google Scholar
Telles, J. C. F. 1987 A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals. Intl J. Numer. Meth. Engng 24 (5), 959973.CrossRefGoogle Scholar
Tian, Z., Perlin, M. & Choi, W. 2008 Evaluation of a deep-water wave breaking criterion. Phys. Fluids 20 (6), 066604.CrossRefGoogle Scholar
Tulin, M. P. 2007 On the transport of energy in water waves. J. Engng Maths 58 (1), 339350.CrossRefGoogle Scholar
Tulin, M. P. & Landrini, M. 2000 Breaking waves in the ocean and around ships. In Twenty-Third Symposium on Naval Hydrodynamics, pp. 713745. Office of Naval Research, Bassin d’Essais des Carenes, National Research Council.Google Scholar
West, B. J., Brueckner, K. A., Janda, R. S., Milder, D. M. & Milton, R. L. 1987 A new numerical method for surface hydrodynamics. J. Geophys. Res. Oceans 92 (C11), 1180311824.CrossRefGoogle Scholar
Xue, M., , H., Liu, Y. & Yue, D. K. P. 2001 Computations of fully nonlinear three-dimensional wave–body interactions. Part 1. Dynamics of steep three-dimensional waves. J. Fluid Mech. 438, 1139.CrossRefGoogle Scholar