Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T03:50:24.923Z Has data issue: false hasContentIssue false

Numerical solution of the early stage of the unsteady viscous flow around a circular cylinder: a comparison with experimental visualization and measurements

Published online by Cambridge University Press:  20 April 2006

Ta Phuoc Loc
Affiliation:
LIMSI–CNRS, B.P. 30, 91406 Orsay, France
R. Bouard
Affiliation:
Laboratoire de Mécanique des Fluides, Université de Poitiers, 86022 Poitiers, France

Abstract

Early stages of unsteady viscous flows around a circular cylinder at Reynolds numbers of 3 × 103 and 9.5 × 103 are analysed numerically by direct integration of the Navier–Stokes equations – a fourth-order finite-difference scheme is used for the resolution of the stream-function equation and a second-order one for the vorticity-transport equation. Evolution with time of the flow structure is studied in detail. Some new phenomena are revealed and confirmed by experiments.

The influence of the grid systems and the downstream boundary conditions on the flow structure and the velocity profiles is reported. The computed results are compared qualitatively and quantitatively with experimental visualization and measurements. The comparison is found to be satisfactory.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blasius, H. 1908 Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. angew. Math. Phys. 56, 1.Google Scholar
Bouard, R. & Coutanceau, M. 1980 The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 104. J. Fluid Mech. 101, 583.Google Scholar
Collins, W. M. & Dennis, S. C. R. 1973a The initial flow past an impulsively started circular cylinder. Q. J. Mech. Appl. Maths 26, 53.Google Scholar
Collins, W. M. & Dennis, S. C. A. 1973b Flow past an impulsively started circular cylinder. J. Fluid Mech. 60, 105.Google Scholar
Coutanceau, M. & Bouard, R. 1977 Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 2. Unsteady flow. J. Fluid Mech. 79, 257.Google Scholar
Coutanceau, M. & Bouard, R. 1979 Sur la formation de tourbillons secondaires dans le sillage d'un cylindre soumis à un départ impulsif. C.R. Acad. Sci. Paris 288, B45.Google Scholar
Daube, O. & Ta Phuoc Loc 1978 Etude numérique d'écoulements instationnaires de fluide visqueux incompressible autour de corps profile par une méthode combinée d'ordre O(h2), O(h4). J. Méc. 17, 651.Google Scholar
Dennis, S. C. R. & Staniforth, A. N. 1971 A numerical method for calculating the initial flow past a cylinder in a viscous fluid. In Proc. 2nd Intl Conf. on Numerical Methods in Fluid Dynamics (ed. M. Holt). Lecture Notes in Physics, vol. 8, p. 343. Springer.
Goldstein, S. & Rosenhead, L. 1936 Boundary layer growth. Proc. Camb. Phil. Soc. 32, 392.Google Scholar
Honji, H. & Taneda, S. 1969 Unsteady flow past a circular cylinder. J. Phys. Soc. Japan 27, 1968.Google Scholar
Ingham, D. B. 1968 Note on the numerical solution for unsteady viscous flow past a circular cylinder. J. Fluid Mech. 31, 815.Google Scholar
Jain, P. C. & Rao, K. S. 1969 Numerical solution of unsteady viscous incompressible fluid flow past a circular cylinder. Phys. Fluids Suppl. 12, II–57.Google Scholar
Kawaguti, M. & Jain, P. C. 1966 Numerical study of a viscous fluid past a circular cylinder. J. Phys. Soc. Japan 21, 2055.Google Scholar
Monnet, P., Coutanceau, M., Daube, O. & Ta Phuoc Loc 1983 The use of visualization as a guide in the numerical determination of the flow around an abruptly accelerated elliptic cylinder or airfoil. In Proc. 3rd Intl Symp. on Flow Visualization, Ann Arbor.
Orszag, S. A. & Israeli, M. 1974 Numerical simulation of viscous fluid flow. Ann. Rev. Fluid Mech. 6, 281.Google Scholar
Patel, V. A. 1976 Time dependent solutions of the viscous incompressible flow past a circular cylinder. Comp. Fluids 4, 13.Google Scholar
Payne, R. B. 1958 Calculations of unsteady viscous flow past a circular cylinder. J. Fluid Mech. 4, 81.Google Scholar
Schuh, H. 1953 Calculation of unsteady boundary layers in two dimensional laminar flow. Z. Flugwiss. 1, 122.Google Scholar
Son, J. S. & Hanratty, T. J. 1969 Numerical solution of the flow around a cylinder at Reynolds number of 40, 200, 500. J. Fluid Mech. 35, 369.Google Scholar
Taneda, S. 1972 Visualization experiments on unsteady viscous flows around cylinders and plates. In Recent Research on Unsteady Boundary Layers, vol. 2 (ed. E. A. Eichelbrenner). Quebec Laval University.
Ta Phuoc Loc 1980 Numerical analysis of unsteady secondary vortices generated by an impulsively started circular cylinder. J. Fluid Mech. 100, 111.Google Scholar
Thom, A. 1933 The flow past circular cylinders at low speeds. Proc. R. Soc. Lond. A 141, 651.Google Scholar
Thoman, D. C. & Szewczyk, A. A. 1969 Time dependent viscous flow over a circular cylinder. Phys. Fluids Suppl. 12, II–76.Google Scholar
Wang, C. Y. 1967 The flow past a circular cylinder which is started impulsively from rest. J. Maths & Phys. 46, 195.Google Scholar
Watson, E. J. 1955 Boundary layer growth. Proc. R. Soc. Lond. A 231, 104.Google Scholar
Wundt, H. 1955 Wachstum der laminaren Grenzschicht an schräg angeströmten Zylindern bei Anfahrt aus der Ruhe. Ing.-Arch. Berlin 23, 212.Google Scholar