Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-30T04:36:19.758Z Has data issue: false hasContentIssue false

Numerical investigation of the steady viscous flow past a stationary deformable bubble

Published online by Cambridge University Press:  20 April 2006

C. I. Christov
Affiliation:
Department of Fluid Mechanics, Institute of Mechanics and Biomechanics, Bulgarian Academy of Sciences, P.O. Box 373, Sofia 1090
P. K. Volkov
Affiliation:
Institute of Theoretical and Applied Mechanics, Siberian Branch of the Academy of Sciences of the USSR, ul. Institutskaya 4/1, Novosibirsk 630090

Abstract

A method for solving the Navier–Stokes equations in domains with moving boundaries is proposed. By means of a coordinate transformation, the region under consideration is converted to a region with known boundaries which are coordinate surfaces. An appropriate difference scheme with an algorithm for its implementation is constructed. The method is applied to the case of steady incompressible viscous flow past a resting deformable bubble. Results are obtained for wide ranges for Reynolds and Weber numbers and compared with other theoretical or experimental works in the common regions for the governing parameters. A separation of the flow and the occurrence of a toroidal vortex in the rear of the bubble is observed and verified through a number of computations. Typical flow patterns as well as a variety of practically important relations between the parameters of the flow are shown graphically.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belov I. V., Elovikov, G. N. & Okulov B. E. 1975 In Teplo- i Masso-Obmennie Protzessi v Vannakh Staleplavitel'nykh Agregatov, pp. 8592. Moscow: Metallurgia.
Bhaga, D. & Weber M. E. 1981 J. Fluid Mech. 105, 6185.
Brabston, D. C. & Keller H. B. 1975 J. Fluid Mech. 69, 179189.
El Sawi M. 1974 J. Fluid Mech. 62, 163183.
Gorodetzkaya A. V. 1949 Zh. Fiz. Khim. 23, pt 1.
Haberman, W. L. & Morton R. K. 1954 Proc. ASCE 80, 125.
Hadamard J. 1911 C. R. Acad. Sci. Paris 152, 17351738.
Happel, J. & Brenner H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.
Jezdinsky, V. & Rudis M. 1973 Vodnohospodarsky Casopis 21, 159172.
Kutateladze, S. S. & Nakoryakov V. E. 1984 Teplomassoobmen i Volny v Gazozhidkostnykh Sistemakh. Novosibirsk.
Levich V. G. 1959 Fiziko-Khimitcheskaya Gidrodinamica. Moscow: Gostekhnizdat.
Miksis M. J., Vanden-Broeck, J.-M. & Keller J. B. 1982 J. Fluid Mech. 123, 3141.
Moore D. W. 1965 J. Fluid Mech. 23, 749766.
Pukhnatchov V. V. 1974 Zadatchi so svobodnoy granitzei dlya uravneniya Nav'e-Stoksa. D.Sc. dissertation, Novosibirsk.
Rybczynski W. 1911 Bull. Acad. Crakowie, ser. A, pp. 4044.
Taylor, T. D. & Acrivos A. 1964 J. Fluid Mech. 18, 466477.
Van Dyke M. 1964 Perturbation Methods in Fluid Dynamics. Academic.
Volkov, P. K. & Christov C. I. 1980 In Tchislennie Metodi v Mekhaniki Zhidkosti i Gaza, Novosibirsk, pp. 1926.
Volkov P. K., Kouznetzov, B. G. & Christov C. I. 1980 Tchisl. Met. Mekh. Splosh. Sredy 11, 2233.
Yanenko N. N. 1971 Method of Fractional Steps. McGraw-Hill.