Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-22T13:06:26.325Z Has data issue: false hasContentIssue false

Nonlinear oscillations of liquid shells in zero gravity

Published online by Cambridge University Press:  26 April 2006

N. A. Pelekasis
Affiliation:
Department of Chemical Engineering
J. A. Tsamopoulos
Affiliation:
Department of Chemical Engineering
G. D. Manolis
Affiliation:
Department of Civil Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA

Abstract

It has been shown experimentally (Lee et al. 1982) that water drops with injected air bubbles inside them may be forced dynamically to assume the spherosymmetric shape. Linear analysis is unable to predict a centring mechanism, but provides two distinct modes of oscillation. Weakly nonlinear theory (Tsamopoulos & Brown 1987) indicates that centring of the bubble inside the drop occurs when the two interfaces move out of phase. A hybrid boundary element-finite element schemes is used here to study the complete effect of nonlinearity on the dynamics of the motion. The gas inside the liquid shell may be considered either incompressible or compressible by using a polytropic relation. In both cases, the present calculations show that besides the fast oscillation of the shell due to an initial disturbance, a slow oscillatory motion of the centres of the bubble and the drop is induced around the concentric configuration. This occurs in both modes of oscillation and is a direct result of Bernoulli's law. Furthermore, when this slow oscillation is damped by viscous forces, it is anticipated that it will lead to a spherosymmetric shape.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. Dover.
Baker, G. R., Meiron, D. I. & Orszag, S. A. 1982 Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123, 477501.Google Scholar
Baker, G. R., Meiron, D. I. & Orszag, S. A. 1984 Boundary integral methods for axisymmetric and three-dimensional Rayleigh-Taylor instability problems. Physica 12D, 1931.Google Scholar
Baker, G. R. & Shelley, M. J. 1986 Boundary integral techniques for multi-connected domains. J Comput. Phys. 64, 112132.Google Scholar
Benjamin, T. B. 1989 Note on shape oscillations of bubbles. J. Fluid Mech. 203, 419424.Google Scholar
De Boor, C. 1978 A Practical Guide to Splines. Springer.
Dold, J. W. & Peregrine, D. H. 1984 Steep unsteady water waves: an efficient computational scheme. In Proc. 19th Intl Conf. on Coastal Engineering, Houston, pp. 955967.
Dommermuth, D. G. & Yue, D. K. P. 1987 Numerical simulations of nonlinear axisymmetric flows with a free surface. J. Fluid Mech. 178, 195219.Google Scholar
Hendricks, C. D. 1982 Inertial confinement fusion targets. In Proc. Second Intl Colloq. Drops and Bubbles (ed. D. H. Le Croissette), pp. 8893. Jet Propulsion Laboratory.
Johnson, R. E. & Sadhal, S. S. 1985 Fluid mechanics of compound multiphase drops and bubbles. Ann. Rev. Fluid Mech. 17, 289320.Google Scholar
Kellogg, 0. D. 1953 Foundations of Potential Theory. Dover.
Kendall, J. M. 1986 Experiments on annular liquid jet instability and on the formation of liquid shells. Phys. Fluids 29, 20862094.Google Scholar
Krasny, R. 1986 A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167, 6593.Google Scholar
Lachat, J. C. & Watson, J. O. 1976 Effective numerical treatment of boundary integral equations: a formulation for three-dimensional elastostatics. Intl J. Numer. Meth. Engng 10, 9911005.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Landman, K. A. 1985 Stability of a viscous compound fluid drop. AIChE J. 31, 567573.Google Scholar
Lee, C. P. & Wang, T. G. 1988 The centring dynamics of a thin liquid shell in capillary oscillations. J. Fluid Mech. 188, 411435.Google Scholar
Lee, M. C., Feng, I. A., Elleman, D. D., Wang, T. G. & Young, A. T. 1982 Generation of a strong core-centering force in a submillimeter compound droplet system. In Proc. Second Intl Colloq. on Drops and Bubbles (ed. D. H. Le Croissette), pp. 107111. Jet Propulsion Laboratory.
Longuet-Higgins, M. S. 1989a Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modes. J. Fluid Mech. 201, 525541.Google Scholar
Longuet-Higgins, M. S. 1989b Some integral theorems relating to the oscillations of bubbles. J. Fluid Mech. 204, 159166.Google Scholar
Longuet-Higgins, M. S. & Cokelet, E. D. 1976 The deformation of steep surface waves on water I. A numerical method of computation. Proc. R. Soc. Lond. A 350, 126.Google Scholar
Lundghen, T. S. & Mansour, N. N. 1988 Oscillations of drops in zero gravity with weak viscous effects. J. Fluid Mech.194, 479510.Google Scholar
Miles, J. W. 1977 On Hamilton's principle for surface waves. J. Fluid Mech. 83, 153158.Google Scholar
Moore, D. W. 1981 On the point vortex method. SIAM J. Sci. Statist. Comput. 2, 6584.Google Scholar
Moore, D. W. 1982 A point vortex method applied to interfacial waves. In Vortex Motion (ed. H. G. Hornung & E. A. Muller), pp. 97105.
Patzer, J. F. & Homsy, G. M. 1975 Hydrodynamic stability of thin spherically concentric fluid shells. J. Colloid Interface Sci. 51, 499508.Google Scholar
Pelekasis, N. A. 1991 Ph.D. thesis, SUNY at Buffalo (in preparation).
Pelekasis, N. A., Tsamopoulos, J. A. & Manolis, G. D. 1990 Equilibrium shapes and stability of charged and conducting drops. Phys. Fluids 2, 13281340.Google Scholar
Pelekasis, N. A., Tsamopoulos, J. A. & Manolis, G. D. 1991 A hybrid finite-boundary element method for inviscid flows with free surface (submitted).
Pullin, D. I. 1982 Numerical studies of surface-tension effects in nonlinear Kelvin-Helmholtz and Rayleigh-Taylor instability. J. Fluid Mech. 119, 507532.Google Scholar
Rosenhead, L. 1931 The formation of vortices from a surface of discontinuity. Proc. R. Soc. Lond. A 134, 170192.Google Scholar
Saffren, M., Elleman, D. D. & Rhim, W. K. 1982 Normal modes of a compound drop. In Proc. Second Intl Colloq. Drops and Bubbles (ed. D. H. Le Croissette), pp. 714. Jet Propulsion Laboratory.
Tadjbakhsh, I. & Keller, J. B. 1960 Standing surface waves of finite amplitude. J. Fluid Mech.8, 442451.Google Scholar
Tsamopoulos, J. A. & Brown, R. A. 1983 Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519537.Google Scholar
Tsamopoulos, J. A. & Brown, R. A. 1984 Resonant oscillations of inviscid charged drops. J. Fluid Mech.147, 373395.Google Scholar
Tsamopoulos, J. A. & Brown, R. A. 1987 Dynamic centering of liquid shells. Phys. Fluids 30, 2735.Google Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 2, 190194. [transl. of Zh. Prikl. Mekh. Tekh. Fiz. 9 (2), 86–94].Google Scholar