Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-16T20:26:13.924Z Has data issue: false hasContentIssue false

Multipole expansion calculation of slow viscous flow about spheroids of different sizes

Published online by Cambridge University Press:  19 April 2006

Wei-Hsi Liao
Affiliation:
Department of Physics, Colorado State University, Fort Collins, Colorado 80523
David A. Krueger
Affiliation:
Department of Physics, Colorado State University, Fort Collins, Colorado 80523

Abstract

The multipole representation technique of Gluckman, Pfeffer & Weinbaum for slow, viscous, axisymmetric motion has been applied to a system of two spheroids. The two particles may have different shapes and volumes. The limitations of this method have been studied through calculations of the drag forces and velocities of particles with aspect ratios from 0·1 to 10 and relative volumes V from 1 to 103. The multipole-expansion convergence is quite slow for large relative volumes and requires on the order of $4 \times V^{\frac{1}{3}}$ multipoles. Wild fluctuations in the drag as the number of multipoles increases were found for large oblate spheroids. Relative velocities are given quite accurately for separations of the centres greater than 1·02 times the minimum separation. Comparisons are made with previous results and approximate theories for two spheres, for non-identical particles at large separation, and for a sphere near a large spheroid.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowen, B. D. & Masliyah, J. H. 1973 Can. J. Chem. Engng 51, 8.
Brenner, H. 1964 J. Fluid Mech. 18, 144.
Cooley, M. D. A. & O'Neill, N. E. 1969 Proc. Camb. Phil. Soc. 66, 407.
Ganatos, P., Pfeffer, R. & Weinbaum, S. 1978 J. Fluid Mech. 84, 79.
Gautschi, W. 1967 SIAM Rev. 9, 24.
Gluckman, M. J., Pfeffer, R. & Weinbaum, S. 1971 J. Fluid Mech. 50, 705.
Gluckman, M. J., Weinbaum, S. & Pfeffer, R. 1972 J. Fluid Mech. 55, 677.
Goren, S. L. 1970 J. Fluid Mech. 41, 619.
Goren, S. L., & O'Neill, M. E. 1971 Chem. Engng Sci. 26, 325.
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Leyden: Noordoff.
Lamb, H. 1945 Hydrodynamics. New York: Dover.
Leichtberg, S., Pfeffer, R. & Weinbaum, S. 1976a Int. J. Multiphase Flow 3, 147.
Leichtberg, S., Weinbaum, S. & Pfeffer, R. 1976b Biorheology 13, 165.
Leichtberg, S., Weinbaum, S., Pfeffer, R. & Gluckman, M. J. 1976c Phil. Trans. Roy. Soc. A 282, 585.
Liao, W. H. & Krueger, D. A. 1979 J. Colloid Interface Sci. 70, 564.
O'Brien, V. 1968 A.I.Ch.E. J. 14, 870.
Peterson, E. A. 1975 Concentration effects in ferrofluids. Ph.D. Thesis, Colorado State University.
Peterson, E. A. & Krueger, D. A. 1977 J. Colloid Interface Sci. 62, 24.
Peterson, E. A., Krueger, D. A., Perry, M. & Jones, T. B. 1975 In Concentration Effects in Ferrofluids (ed. C. D. Graham, G. H. Lander, & J. J. Rhyne), AIP Conf. Proc. no. 24, p. 560. Amer. Phys. Int., New York.
Stimson, M. & Jeffery, O. B. 1926 Proc. Roy. Soc. A 111, 110.
Wacholder, E. & Sather, N. F. 1974 J. Fluid Mech. 65, 417.
Youngren, G. K. & Acrivos, A. 1975a J. Fluid Mech. 69, 337. Corrigendum: 1976 J. Fluid Mech. 75 813.
Youngren, G. K. & Acrivos, A. 1975b J. Chem. Phys. 63, 3846.
Youngren, G. K. & Acrivos, A. 1976 J. Fluid Mech. 76, 433.