Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-18T02:30:20.645Z Has data issue: false hasContentIssue false

Motion of a model swimmer near a weakly deforming interface

Published online by Cambridge University Press:  04 July 2017

Vaseem A. Shaik
Affiliation:
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
Arezoo M. Ardekani*
Affiliation:
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
*
Email address for correspondence: ardekani@purdue.edu

Abstract

Locomotion of microswimmers near an interface has attracted recent attention and has several applications related to synthetic swimmers and microorganisms. In this work, we study the motion of a model swimmer called the ‘squirmer’ with an arbitrary time-dependent swimming gait near a weakly deforming interface. We first obtain an exact solution of the governing equations for the motion of the swimmer near a plane interface using the bipolar coordinate method, and then an approximate solution using the method of reflections. We thereby derive the velocity of a swimmer due to small interface deformations using the domain perturbation method and Lorentz reciprocal theorem. We use our solution to study the dynamics of a swimmer with steady, as well as time-reversible, squirming gaits. The long-time dynamics of a time-reversible swimmer is such that it either moves towards or away from the interface. Thus, we divide its phase space into regions of attraction (repulsion) towards (from) the interface. The long-time orientation of a time-reversible swimmer that is moving towards the interface depends on its initial orientation. Additionally, we find that the method of reflections is accurate to $O(1)$ distances of the swimmer from the interface.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aderogba, K. & Blake, J. R. 1978 Action of a force near the planar surface between semi-infinite immiscible liquids at very low Reynolds numbers: addendum. Bull. Austral. Math. Soc. 19 (02), 309318.Google Scholar
Becker, L. E., McKinley, G. H. & Stone, H. A. 1996 Sedimentation of a sphere near a plane wall: weak non-Newtonian and inertial effects. J. Non-Newtonian Fluid Mech. 63 (2–3), 201233.Google Scholar
Berdan, C. & Leal, L. G. 1982 Motion of a sphere in the presence of a deformable interface. J. Colloid Interface Sci. 87 (1), 6280.Google Scholar
Berke, A. P., Turner, L., Berg, H. C. & Lauga, E. 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101 (3), 038102.Google Scholar
Blake, J. R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (01), 199208.Google Scholar
Blake, J. R. & Chwang, A. T. 1974 Fundamental singularities of viscous flow. J. Engng Maths 8 (1), 2329.CrossRefGoogle Scholar
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9 (1), 339398.CrossRefGoogle Scholar
Chisholm, N. G., Legendre, D., Lauga, E. & Khair, A. S. 2016 A squirmer across Reynolds numbers. J. Fluid Mech. 796, 233256.Google Scholar
Chwang, A. T. & Wu, T. Y.-T. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67 (04), 787815.Google Scholar
Clift, A. F. & Hart, J. 1953 Variations in the apparent viscosity of human cervical mucus. J. Physiol. 122 (2), 358365.CrossRefGoogle ScholarPubMed
Crowdy, D. 2011 Treadmilling swimmers near a no-slip wall at low Reynolds number. Intl J. Non-Linear Mech. 46 (4), 577585.Google Scholar
Crowdy, D., Lee, S., Samson, O., Lauga, E. & Hosoi, A. E. 2011 A two-dimensional model of low-Reynolds number swimming beneath a free surface. J. Fluid Mech. 681, 2447.CrossRefGoogle Scholar
Crowdy, D. G. & Or, Y. 2010 Two-dimensional point singularity model of a low-Reynolds-number swimmer near a wall. Phys. Rev. E 81 (3), 036313.Google ScholarPubMed
Di Leonardo, R., Dell’Arciprete, D., Angelani, L. & Iebba, V. 2011 Swimming with an image. Phys. Rev. Lett. 106 (3), 038101.Google Scholar
Doostmohammadi, A., Stocker, R. & Ardekani, A. M. 2012 Low-Reynolds-number swimming at pycnoclines. Proc. Natl Acad. Sci. USA 109 (10), 38563861.CrossRefGoogle ScholarPubMed
Elfring, G. J. 2015 A note on the reciprocal theorem for the swimming of simple bodies. Phys. Fluids 27 (2), 023101.Google Scholar
Ferracci, J., Ueno, H., Numayama-Tsuruta, K., Imai, Y., Yamaguchi, T. & Ishikawa, T. 2013 Entrapment of ciliates at the water-air interface. PLoS ONE 8 (10), e75238.CrossRefGoogle ScholarPubMed
Guazzelli, E., Morris, J. F. & Pic, S. 2011 A Physical Introduction to Suspension Dynamics. Cambridge University Press.Google Scholar
Happel, J. & Brenner, H. 1981 Low Reynolds Number Hydrodynamics, Mechanics of Fluids and Transport Processes, vol. 1. Springer.Google Scholar
Ishikawa, T., Locsei, J. T. & Pedley, T. J. 2008 Development of coherent structures in concentrated suspensions of swimming model micro-organisms. J. Fluid Mech. 615, 401431.Google Scholar
Ishikawa, T. & Pedley, T. J. 2007 Diffusion of swimming model micro-organisms in a semi-dilute suspension. J. Fluid Mech. 588, 437462.Google Scholar
Ishikawa, T. & Pedley, T. J. 2008 Coherent structures in monolayers of swimming particles. Phys. Rev. Lett. 100 (8), 088103.CrossRefGoogle ScholarPubMed
Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Lauga, E. 2016 Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48 (1), 105130.Google Scholar
Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. 2006 Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90 (2), 400412.Google Scholar
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.CrossRefGoogle Scholar
Leal, L. G. 2007 Advanced Transport Phenomena. Cambridge University Press.CrossRefGoogle Scholar
Lee, S., Bush, J. W. M., Hosoi, A. E. & Lauga, E. 2008 Crawling beneath the free surface: water snail locomotion. Phys. Fluids 20 (8), 082106.Google Scholar
Lee, S. H., Chadwick, R. S. & Leal, L. G. 1979 Motion of a sphere in the presence of a plane interface. Part 1. An approximate solution by generalization of the method of Lorentz. J. Fluid Mech. 93 (04), 705726.Google Scholar
Lee, S. H. & Leal, L. G. 1980 Motion of a sphere in the presence of a plane interface. Part 2. An exact solution in bipolar co-ordinates. J. Fluid Mech. 98 (01), 193224.Google Scholar
Li, G.-J. & Ardekani, A. M. 2014 Hydrodynamic interaction of microswimmers near a wall. Phys. Rev. E 90 (1), 013010.Google Scholar
Li, G. J., Karimi, A. & Ardekani, A. M. 2014 Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid. Rheol. Acta 53 (12), 911926.Google Scholar
Lighthill, J. 1976 Flagellar hydrodynamics. SIAM Rev. 18 (2), 161230.Google Scholar
Lighthill, M. J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5 (2), 109118.Google Scholar
Lopez, D. & Lauga, E. 2014 Dynamics of swimming bacteria at complex interfaces. Phys. Fluids 26 (7), 071902.Google Scholar
Matas-Navarro, R., Golestanian, R., Liverpool, T. B. & Fielding, S. M. 2014 Hydrodynamic suppression of phase separation in active suspensions. Phys. Rev. E 90 (3), 032304.Google Scholar
Mathijssen, A. J. T. M., Doostmohammadi, A., Yeomans, J. M. & Shendruk, T. N. 2016 Hydrodynamics of micro-swimmers in films. J. Fluid Mech. 806, 3570.Google Scholar
Michelin, S. & Lauga, E. 2013 Unsteady feeding and optimal strokes of model ciliates. J. Fluid Mech. 715, 131.Google Scholar
Navarro, R. M. & Fielding, S. M. 2015 Clustering and phase behaviour of attractive active particles with hydrodynamics. Soft Matt. 11 (38), 75257546.Google Scholar
Pak, O. S. & Lauga, E. 2014 Generalized squirming motion of a sphere. J. Engng Maths 88 (1), 128.Google Scholar
Purcell, E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.Google Scholar
Rosen, M. J., Wang, H., Shen, P. & Zhu, Y. 2005 Ultralow interfacial tension for enhanced oil recovery at very low surfactant concentrations. Langmuir 21 (9), 37493756.Google Scholar
Short, M. B., Solari, C. A., Ganguly, S., Powers, T. R., Kessler, J. O. & Goldstein, R. E. 2006 Flows driven by flagella of multicellular organisms enhance long-range molecular transport. Proc. Natl Acad. Sci. USA 103 (22), 83158319.Google Scholar
Spagnolie, S. E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.Google Scholar
Spagnolie, S. E., Moreno-Flores, G. R., Bartolo, D. & Lauga, E. 2015 Geometric capture and escape of a microswimmer colliding with an obstacle. Soft Matt. 11 (17), 33963411.Google Scholar
Takagi, D., Palacci, J., Braunschweig, A. B., Shelley, M. J. & Zhang, J. 2014 Hydrodynamic capture of microswimmers into sphere-bound orbits. Soft Matt. 10 (11), 17841789.Google Scholar
Trouilloud, R., Yu, T. S., Hosoi, A. E. & Lauga, E. 2008 Soft swimming: exploiting deformable interfaces for low Reynolds number locomotion. Phys. Rev. Lett. 101 (4), 048102.Google Scholar
Yazdi, S., Ardekani, A. M. & Borhan, A. 2014 Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid. Phys. Rev. E 90 (4), 043002.Google Scholar