Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-16T05:03:07.113Z Has data issue: false hasContentIssue false

Molecular kinetic modelling of non-equilibrium transport of confined van der Waals fluids

Published online by Cambridge University Press:  24 November 2023

Baochao Shan
Affiliation:
School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
Wei Su
Affiliation:
Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
Livio Gibelli
Affiliation:
School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
Yonghao Zhang*
Affiliation:
Centre for Interdisciplinary Research in Fluids, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
*
Email address for correspondence: yonghao.zhang@imech.ac.cn

Abstract

A thermodynamically consistent kinetic model is proposed for the non-equilibrium transport of confined van der Waals fluids, where the long-range molecular attraction is considered by a mean-field term in the transport equation, and the transport coefficients are tuned to match the experimental data. The equation of state of the van der Waals fluids can be obtained from an appropriate choice of the pair correlation function. By contrast, the modified Enskog theory predicts non-physical negative transport coefficients near the critical temperature and may not be able to recover the Boltzmann equation in the dilute limit. In addition, the shear viscosity and thermal conductivity are predicted more accurately by taking gas molecular attraction into account, while the softened Enskog formula for hard-sphere molecules performs better in predicting the bulk viscosity. The present kinetic model agrees with the Boltzmann model in the dilute limit and with the Navier–Stokes equations in the continuum limit, indicating its capability in modelling dilute-to-dense and continuum-to-non-equilibrium flows. The new model is examined thoroughly and validated by comparing it with the molecular dynamics simulation results. In contrast to the previous studies, our simulation results reveal the importance of molecular attraction even for high temperatures, which holds the molecules to the bulk while the hard-sphere model significantly overestimates the density near the wall. Because the long-range molecular attraction is considered appropriately in the present model, the velocity slip and temperature jump at the surface for the more realistic van der Waals fluids can be predicted accurately.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, F.J., Garcia, A.L. & Alder, B.J. 1995 A consistent Boltzmann algorithm. Phys. Rev. Lett. 74 (26), 5212.CrossRefGoogle ScholarPubMed
Amorós, J., Maeso, M.J. & Villar, E. 1992 A test of the modified Enskog theory for the transport properties of liquids. Intl J. Thermophys. 13 (5), 907920.CrossRefGoogle Scholar
Andersen, H.C., Weeks, J.D. & Chandler, D. 1971 Relationship between the hard-sphere fluid and fluids with realistic repulsive forces. Phys. Rev. A 4 (4), 1597.CrossRefGoogle Scholar
Anderson, D.M., McFadden, G.B. & Wheeler, A.A. 1998 Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30 (1), 139165.CrossRefGoogle Scholar
Barker, J.A. & Henderson, D. 1967 Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J. Chem. Phys. 47 (11), 47144721.CrossRefGoogle Scholar
van Beijeren, H. 1983 Equilibrium distribution of hard-sphere systems and revised Enskog theory. Phys. Rev. Lett. 51 (17), 1503.CrossRefGoogle Scholar
van Beijeren, H. & Ernst, M.H. 1973 The modified Enskog equation. Physica 68 (3), 437456.CrossRefGoogle Scholar
Ben-Amotz, D. & Herschbach, D.R. 1990 Estimation of effective diameters for molecular fluids. J. Phys. Chem. 94 (3), 10381047.CrossRefGoogle Scholar
Borgelt, P., Hoheisel, C. & Stell, G. 1990 Exact molecular dynamics and kinetic theory results for thermal transport coefficients of the Lennard-Jones argon fluid in a wide region of states. Phys. Rev. A 42 (2), 789.CrossRefGoogle Scholar
Busuioc, S. 2023 Quadrature-based lattice Boltzmann model for non-equilibrium dense gas flows. Phys. Fluids 35 (1), 016112.CrossRefGoogle Scholar
Carnahan, N.F. & Starling, K.E. 1969 Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51 (2), 635636.CrossRefGoogle Scholar
Cercignani, C. & Lampis, M. 1988 On the kinetic theory of a dense gas of rough spheres. J. Stat. Phys. 53, 655672.CrossRefGoogle Scholar
Chapman, S. & Cowling, T.G. 1990 The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press.Google Scholar
Chatwell, R.S. & Vrabec, J. 2020 Bulk viscosity of liquid noble gases. J. Chem. Phys. 152 (9), 094503.CrossRefGoogle ScholarPubMed
Chung, T.H., Ajlan, M., Lee, L.L. & Starling, K.E. 1988 Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Engng Chem. Res. 27 (4), 671679.CrossRefGoogle Scholar
Chung, T.H., Lee, L.L. & Starling, K.E. 1984 Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity. Ind. Engng Chem. Fundam. 23 (1), 813.CrossRefGoogle Scholar
Collings, A.F. & Hain, D.L. 1976 The density dependence of bulk viscosity in a simple dense gas. J. Chem. Phys. 65 (8), 29952997.CrossRefGoogle Scholar
Corral-Casas, C., Li, J., Borg, M.K. & Gibelli, L. 2022 Knudsen minimum disappearance in molecular-confined flows. J. Fluid Mech. 945, A28.CrossRefGoogle Scholar
Cotterman, R.L., Schwarz, B.J. & Prausnitz, J.M. 1986 Molecular thermodynamics for fluids at low and high densities. Part I: pure fluids containing small or large molecules. AIChE J. 32 (11), 17871798.CrossRefGoogle Scholar
Dorfman, J.R., van Beijeren, H. & Kirkpatrick, T.R. 2021 Contemporary Kinetic Theory of Matter. Cambridge University Press.CrossRefGoogle Scholar
Enskog, D. 1921 The numerical calculation of phenomena in fairly dense gases. Arkiv Mat. Astr. Fys. 16 (1), 160.Google Scholar
Ferziger, J.H. & Kaper, H.G. 1972 Mathematical Theory of Transport Processes in Gases. North-Holland Publishing Company.Google Scholar
Fischer, J. & Methfessel, M. 1980 Born–Green–Yvon approach to the local densities of a fluid at interfaces. Phys. Rev. A 22 (6), 2836.CrossRefGoogle Scholar
Frezzotti, A. 1997 Molecular dynamics and Enskog theory calculation of one dimensional problems in the dynamics of dense gases. Physica A 240 (1–2), 202211.CrossRefGoogle Scholar
Frezzotti, A. 1999 Monte Carlo simulation of the heat flow in a dense hard sphere gas. Eur. J. Mech. (B/Fluids) 18 (1), 103119.CrossRefGoogle Scholar
Frezzotti, A., Barbante, P. & Gibelli, L. 2019 Direct simulation Monte Carlo applications to liquid–vapor flows. Phys. Fluids 31 (6), 062103.CrossRefGoogle Scholar
Frezzotti, A. & Sgarra, C. 1993 Numerical analysis of a shock-wave solution of the Enskog equation obtained via a Monte Carlo method. J. Stat. Phys. 73 (1), 193207.CrossRefGoogle Scholar
Gan, Y., Xu, A., Lai, H., Li, W., Sun, G. & Succi, S. 2022 Discrete Boltzmann multi-scale modeling of non-equilibrium multiphase flows. J. Fluid Mech. 951, A8.CrossRefGoogle Scholar
Giovangigli, V. 2020 Kinetic derivation of diffuse-interface fluid models. Phys. Rev. E 102 (1), 012110.CrossRefGoogle ScholarPubMed
Giovangigli, V. 2021 Kinetic derivation of Cahn–Hilliard fluid models. Phys. Rev. E 104 (5), 054109.CrossRefGoogle ScholarPubMed
Gray, P. & Rice, S.A. 1964 On the kinetic theory of dense fluids. XVIII. The bulk viscosity. J. Chem. Phys. 41 (12), 36893694.CrossRefGoogle Scholar
Guo, Z. & Shu, C. 2013 Lattice Boltzmann Method and its Application in Engineering. World Scientific.CrossRefGoogle Scholar
Guo, Z., Zhao, T. & Shi, Y. 2005 Simple kinetic model for fluid flows in the nanometer scale. Phys. Rev. E 71 (3), 035301.CrossRefGoogle ScholarPubMed
Guo, Z., Zhao, T. & Shi, Y. 2006 Generalized hydrodynamic model for fluid flows: from nanoscale to macroscale. Phys. Fluids 18 (6), 067107.CrossRefGoogle Scholar
Hanley, H.J.M., McCarty, R.D. & Cohen, E.G.D. 1972 Analysis of the transport coefficients for simple dense fluid: application of the modified Enskog theory. Physica 60 (2), 322356.CrossRefGoogle Scholar
Haynes, W.M. 1973 Viscosity of gaseous and liquid argon. Physica 67 (3), 440470.CrossRefGoogle Scholar
He, X. & Doolen, G.D. 2002 Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J. Stat. Phys. 107 (1), 309328.CrossRefGoogle Scholar
He, X., Shan, X. & Doolen, G.D. 1998 Discrete Boltzmann equation model for nonideal gases. Phys. Rev. E 57 (1), R13.CrossRefGoogle Scholar
Hoover, W.G., Evans, D.J., Hickman, R.B., Ladd, A.J.C., Ashurst, W.T. & Moran, B. 1980 a Lennard-Jones triple-point bulk and shear viscosities. Green–Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics. Phys. Rev. A 22 (4), 1690.CrossRefGoogle Scholar
Hoover, W.G., Ladd, A.J.C., Hickman, R.B. & Holian, B.L. 1980 b Bulk viscosity via nonequilibrium and equilibrium molecular dynamics. Phys. Rev. A 21 (5), 1756.CrossRefGoogle Scholar
Huang, R., Li, Q. & Adams, N.A. 2022 Surface thermodynamics and wetting condition in the multiphase lattice Boltzmann model with self-tuning equation of state. J. Fluid Mech. 940, A46.CrossRefGoogle Scholar
Huang, R., Wu, H. & Adams, N.A. 2021 Mesoscopic lattice Boltzmann modeling of the liquid–vapor phase transition. Phys. Rev. Lett. 126 (24), 244501.CrossRefGoogle ScholarPubMed
Jaeger, F., Matar, O.K. & Müller, E.A. 2018 Bulk viscosity of molecular fluids. J. Chem. Phys. 148 (17), 174504.CrossRefGoogle ScholarPubMed
Joseph, S. & Aluru, N.R. 2008 Why are carbon nanotubes fast transporters of water? Nano Lett. 8 (2), 452458.CrossRefGoogle ScholarPubMed
Karkheck, J. & Stell, G. 1981 Kinetic mean-field theories. J. Chem. Phys. 75 (3), 14751487.CrossRefGoogle Scholar
Kogan, M.N. 1973 Molecular gas dynamics. Annu. Rev. Fluid Mech. 5 (1), 383404.CrossRefGoogle Scholar
Kremer, G.M. 2010 An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer Science & Business Media.CrossRefGoogle Scholar
Luo, L. 2000 Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gases. Phys. Rev. E 62 (4), 4982.CrossRefGoogle ScholarPubMed
Luo, L. 1998 Unified theory of lattice Boltzmann models for nonideal gases. Phys. Rev. Lett. 81 (8), 1618.CrossRefGoogle Scholar
Madigosky, W.M. 1967 Density dependence of the bulk viscosity in argon. J. Chem. Phys. 46 (11), 44414444.CrossRefGoogle Scholar
Mahmoud, M. 2014 Development of a new correlation of gas compressibility factor (Z-factor) for high pressure gas reservoirs. J. Energy Resour. Technol. 136 (1), 012903.CrossRefGoogle Scholar
Malbrunot, P., Boyer, A., Charles, E. & Abachi, H. 1983 Experimental bulk viscosities of argon, krypton, and xenon near their triple point. Phys. Rev. A 27 (3), 1523.CrossRefGoogle Scholar
Martini, A., Hsu, H.-Y., Patankar, N.A. & Lichter, S. 2008 Slip at high shear rates. Phys. Rev. Lett. 100 (20), 206001.CrossRefGoogle ScholarPubMed
Martys, N.S. 1999 Energy conserving discrete Boltzmann equation for nonideal systems. Intl J. Mod. Phys. C 10 (07), 13671382.CrossRefGoogle Scholar
Maxwell, J.C. 1874 Van der Waals on the continuity of the gaseous and liquid states. Nature 10 (259), 477480.Google Scholar
Mehrabi, M., Javadpour, F. & Sepehrnoori, K. 2017 Analytical analysis of gas diffusion into non-circular pores of shale organic matter. J. Fluid Mech. 819, 656677.CrossRefGoogle Scholar
Michels, A., Sengers, J.V. & Van de Klundert, L.J.M. 1963 The thermal conductivity of argon at elevated densities. Physica 29 (2), 149160.CrossRefGoogle Scholar
Neufeld, P.D., Janzen, A.R. & Aziz, R.A. 1972 Empirical equations to calculate 16 of the transport collision integrals $\omega ^{(l, s)*}$ for the Lennard-Jones (12–6) potential. J. Chem. Phys. 57 (3), 11001102.CrossRefGoogle Scholar
Nie, X., Chen, S.E.W. & Robbins, M.O. 2004 A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow. J. Fluid Mech. 500, 5564.CrossRefGoogle Scholar
Rana, A.S., Lockerby, D.A. & Sprittles, J.E. 2018 Evaporation-driven vapour microflows: analytical solutions from moment methods. J. Fluid Mech. 841, 962988.CrossRefGoogle Scholar
Rangel-Huerta, A. & Velasco, R.M. 1996 Generalized bulk viscosity for Enskog gases. J. Non-Equilib. Thermodyn. 21, 321329.Google Scholar
Reichl, L.E. 2016 A Modern Course in Statistical Physics. John Wiley & Sons.CrossRefGoogle Scholar
Restrepo, J. & Simões-Moreira, J.R. 2022 Viscous effects on real gases in quasi-one-dimensional supersonic convergent divergent nozzle flows. J. Fluid Mech. 951, A14.CrossRefGoogle Scholar
Sadr, M. & Gorji, M.H. 2017 A continuous stochastic model for non-equilibrium dense gases. Phys. Fluids 29 (12), 122007.CrossRefGoogle Scholar
Sadr, M. & Gorji, M.H. 2019 Treatment of long-range interactions arising in the Enskog–Vlasov description of dense fluids. J. Comput. Phys. 378, 129142.CrossRefGoogle Scholar
Sadr, M., Pfeiffer, M. & Gorji, M.H. 2021 Fokker–Planck–Poisson kinetics: multi-phase flow beyond equilibrium. J. Fluid Mech. 920, A46.CrossRefGoogle Scholar
Shakhov, E.M. 1968 Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3 (5), 9596.CrossRefGoogle Scholar
Shan, B., Wang, P., Zhang, Y. & Guo, Z. 2020 Discrete unified gas kinetic scheme for all Knudsen number flows. IV. Strongly inhomogeneous fluids. Phys. Rev. E 101 (4), 043303.CrossRefGoogle ScholarPubMed
Shan, B., Wang, R., Guo, Z. & Wang, P. 2021 Contribution quantification of nanoscale gas transport in shale based on strongly inhomogeneous kinetic model. Energy 228, 120545.CrossRefGoogle Scholar
Sheng, Q., Gibelli, L., Li, J., Borg, M.K. & Zhang, Y. 2020 Dense gas flow simulations in ultra-tight confinement. Phys. Fluids 32 (9), 092003.CrossRefGoogle Scholar
de Sobrino, L. 1967 On the kinetic theory of a van der Waals gas. Can. J. Phys. 45 (2), 363385.CrossRefGoogle Scholar
Su, W., Gibelli, L., Li, J., Borg, M.K. & Zhang, Y. 2023 Kinetic modeling of nonequilibrium flow of hard-sphere dense gases. Phys. Rev. Fluids 8, 013401.CrossRefGoogle Scholar
Su, W., Wang, P., Zhang, Y. & Wu, L. 2020 Implicit discontinuous Galerkin method for the Boltzmann equation. J. Sci. Comput. 82, 135.CrossRefGoogle Scholar
Suryanarayanan, S., Singh, S. & Ansumali, S. 2013 Extended BGK Boltzmann for dense gases. Commun. Comput. Phys. 13 (3), 629648.CrossRefGoogle Scholar
Takata, S., Matsumoto, T. & Hattori, M. 2021 Kinetic model for the phase transition of the van der Waals fluid. Phys. Rev. E 103 (6), 062110.CrossRefGoogle ScholarPubMed
Takata, S. & Noguchi, T. 2018 A simple kinetic model for the phase transition of the van der Waals fluid. J. Stat. Phys. 172 (3), 880903.CrossRefGoogle Scholar
Tarazona, P. 1985 Free-energy density functional for hard spheres. Phys. Rev. A 31 (4), 2672.CrossRefGoogle ScholarPubMed
Thompson, A.P., et al. 2022 LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171.CrossRefGoogle Scholar
Torres-Herrera, U. & Poiré, E.C. 2021 A continuum model to study fluid dynamics within oscillating elastic nanotubes. J. Fluid Mech. 916, A16.CrossRefGoogle Scholar
Torrilhon, M. 2016 Modeling nonequilibrium gas flow based on moment equations. Annu. Rev. Fluid Mech. 48, 429458.CrossRefGoogle Scholar
Van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. 2020 Co-designing electronics with microfluidics for more sustainable cooling. Nature 585 (7824), 211216.CrossRefGoogle ScholarPubMed
Vanderlick, T.K., Scriven, L.E. & Davis, H.T. 1989 Molecular theories of confined fluids. J. Chem. Phys. 90 (4), 24222436.CrossRefGoogle Scholar
Vera, J.H. & Prausnitz, J.M. 1972 Generalized van der Waals theory for dense fluids. Chem. Engng J. 3, 113.CrossRefGoogle Scholar
van der Waals, J.D. 1873 Over de Continuiteit van den Gas-en Vloeistoftoestand. Sijthoff.Google Scholar
Wang, M. & Li, Z. 2007 An Enskog based Monte Carlo method for high Knudsen number non-ideal gas flows. Comput. Fluids 36 (8), 12911297.CrossRefGoogle Scholar
Wang, P., Wu, L., Ho, M.T., Li, J., Li, Z. & Zhang, Y. 2020 The kinetic Shakhov–Enskog model for non-equilibrium flow of dense gases. J. Fluid Mech. 883, A48.CrossRefGoogle Scholar
Wang, Z., Wang, M. & Chen, S. 2018 Coupling of high Knudsen number and non-ideal gas effects in microporous media. J. Fluid Mech. 840, 5673.CrossRefGoogle Scholar
Wu, L., Liu, H., Reese, J.M. & Zhang, Y. 2016 Non-equilibrium dynamics of dense gas under tight confinement. J. Fluid Mech. 794, 252266.CrossRefGoogle Scholar
Wu, L., Zhang, Y. & Reese, J.M. 2015 Fast spectral solution of the generalized Enskog equation for dense gases. J. Comput. Phys. 303, 6679.CrossRefGoogle Scholar
Zhang, L., Shan, B., Zhao, Y. & Guo, Z. 2019 Review of micro seepage mechanisms in shale gas reservoirs. Intl J. Heat Mass Transfer 139, 144179.CrossRefGoogle Scholar
Zhao, Y., Zhang, L., Luo, J. & Zhang, B. 2014 Performance of fractured horizontal well with stimulated reservoir volume in unconventional gas reservoir. J. Hydrol. 512, 447456.CrossRefGoogle Scholar