Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-21T22:54:21.854Z Has data issue: false hasContentIssue false

Measurements in an incompressible three-dimensional turbulent boundary layer, under infinite swept-wing conditions, and comparison with theory

Published online by Cambridge University Press:  29 March 2006

B. Van Den Berg
Affiliation:
National Aerospace Laboratory, Amsterdam
A. Elsenaar
Affiliation:
National Aerospace Laboratory, Amsterdam
J. P. F. Lindhout
Affiliation:
National Aerospace Laboratory, Amsterdam
P. Wesseling
Affiliation:
Twente University of Technology, Enschede, The Netherlands

Abstract

First a three-dimensional turbulent boundary-layer experiment is described. This has been carried out with the specific aim of providing a test-case for calculation methods. Much attention has been paid to the design of the test set-up. An infinite swept-wing flow has been simulated with good accuracy. The initially two-dimensional boundary layer on the test plate was subjected to an adverse pressure gradient, which led to three-dimensional separation near the trailing edge of the plate. Next, a calculation method for three-dimensional turbulent boundary layers is discussed. This solves the boundary-layer equations numerically by finite differences. The turbulent shear stress is obtained from a generalized version of Bradshaw's two-dimensional turbulent shear stress equation. The results of the calculations are compared with those of the experiment. Agreement is good over a considerable distance; but large discrepancies are apparent near the separation line.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berg, B. Van Den 1972 NLR Tech. Rep. no. 72111 U.
Berg, B. Van Den 1975 J. Fluid Mech. 70, 149.
Berg, B. Van Den & Elsenaar, A. 1972 NLR Tech. Rep. no. 72092 U.
Bradshaw, P. 1971 J. Fluid Mech. 46, 417.
Bradhsaw, P. 1973 AGARDograph, no. 169.
Bradshaw, P., Ferriss, D. H. & Atwell, N. P. 1967 J. Fluid Mech. 28, 593.
Bradshaw, P. & Terrell, M. G. 1969 NPL Aero Rep. no. 1305.
Clauser, F. H. 1954 J. Aero. Sci. 21, 91.
Cooke, J. C. & Brebner, G. G. 1961 Boundary Layer and Flow Control (ed. Lachmann). Pergamon.
Cumpsty, N. A. & Head, M. R. 1970 Aero. Quart. 21, 121.
East, L. F. 1973 RAE Tech. Rep. no. 73141.
East, L. F. & Hoxey, R. P. 1969a RAE Tech Rep. no. 69041.
East, L. F. & Hoxey, R. P. 1969b RAE Tech Rep. no. 69137.
Fannelop, T. K. & Humphreys, D. A. 1974 A.I.A.A. Paper, no. 74–13.
Francis, G. P. & Pierce, F. J. 1967 J. Basic Eng. 89, 597.
Hoknung, H. G. & Joubert, P. N. 1963 J. Fluid Mech. 15, 368.
Johnston, J. P. 1960 J. Basic Eng. 82, 233.
Johnston, J. P. 1970 J. Fluid Mech. 42, 823.
Krause, E. 1973 AGARD Lecture Series, no. 64.
Lindhout, J. P. F. 1974 NLR Tech. Rep. no. 74159 U.
Michel, R., Cousteix, J. & Quemard, C. 1972 La Recherche Aérospatiale 1, 1.
Nash, J. F. 1969 J. Fluid Mech. 37, 625.
Nash, J. F. & Patel, V. C. 1971 Georgia Inst. Tech. Project Squid Symp.
Pierce, F. J. & Klinksiek, W. F. 1971 Virginia Polytech. Inst. VPI-E-71-14.
Raetz, G. S. 1957 Northrop Rep. NAI 58–37.
Rogers, B. K. & Head, M. R. 1969 Roy. Aero. Soc. Aero. J. 73, 798.
Shanebrook, J. R. & Sumner, W. J. 1973 A.I.A.A. J. 11, 950.
Smith, P. D. 1972 Aero. Res. Council. R. & M. no. 3739.
Vermeulen, A. 1971 Ph.D. thesis, Department of Engineering, Cambridge University.
Wesseling, P. 1969 NLR AT 69–01.
Wesseling, P. & Lindhout, J. P. F. 1971 AGARD Conf. Proc. no. 93.