Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-21T20:05:16.779Z Has data issue: false hasContentIssue false

Lagrangian dispersion and averaging behind a two-dimensional gaseous detonation front

Published online by Cambridge University Press:  08 August 2023

Hiroaki Watanabe*
Affiliation:
Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8603, Japan Institut Prime UPR 3346 CNRS, ISAE-ENSMA, Université de Poitiers, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope-Chasseneuil CEDEX, France
Akiko Matsuo
Affiliation:
Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
Ashwin Chinnayya
Affiliation:
Institut Prime UPR 3346 CNRS, ISAE-ENSMA, Université de Poitiers, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope-Chasseneuil CEDEX, France
Noboru Itouyama
Affiliation:
Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8603, Japan
Akira Kawasaki
Affiliation:
Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8603, Japan
Ken Matsuoka
Affiliation:
Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8603, Japan
Jiro Kasahara
Affiliation:
Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8603, Japan
*
Email address for correspondence: watanabe0204@keio.jp

Abstract

Two-dimensional numerical simulations with the particle tracking method were conducted to analyse the dispersion behind the detonation front and its mean structure. The mixtures were 2H$_2$–O$_2$–7Ar and 2H$_2$–O$_2$ of increased irregularity in ambient conditions. The detonation could be described as a two-scale phenomenon, especially for the unstable case. The first scale is related to the main heat release zone, and the second where some classical laws of turbulence remain relevant. The dispersion of the particles was promoted by the fluctuations of the leading shock and its curvature, the presence of the reaction front, and to a lesser extent transverse waves, jets and vortex motion. Indeed, the dispersion and the relative dispersion could be scaled using the reduced activation energy and the $\chi$ parameter, respectively, suggesting that the main mechanism driving the dispersion came from the one-dimensional leading shock fluctuations and heat release. The dispersion within the induction time scale was closely related to the cellular structure, particles accumulating along the trajectory of the triple points. Then, after a transient where the fading transverse waves and the vortical motions coming from jets and slip lines were present, the relative dispersion relaxed towards a Richardson–Obukhov regime, especially for the unstable case. Two new Lagrangian Favre average procedures for the gaseous detonation in the instantaneous shock frame were proposed and the mean profiles were compared with those from Eulerian procedure. The characteristic lengths for the detonation were similar, meaning that the Eulerian procedure gave the mean structure with a reasonable accuracy.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abderrahmane, H.A., Paquet, F. & Ng, H.D. 2011 Applying nonlinear dynamics theory to one-dimensional pulsating detonations. Combust. Theor. Model. 15, 205225.CrossRefGoogle Scholar
Anand, V. & Gutmark, E. 2019 Rotating detonation combustors and their similarities to rocket instabilities. Prog. Energy Combust. Sci. 73, 182234.CrossRefGoogle Scholar
Austin, J.M. 2003 The role of instability in gaseous detonation. PhD thesis, California Institute of Technology.Google Scholar
Austin, J.M., Pintgen, F. & Shepherd, J.E. 2005 Reaction zone in highly unstable detonations. Proc. Combust. Inst. 30, 18491857.CrossRefGoogle Scholar
Babiano, A., Basdevant, C., Roy, P.L. & Sadourny, R. 1990 Relative dispersion in two-dimensional turbulence. J. Fluid Mech. 214, 535557.CrossRefGoogle Scholar
Boffetta, G., Celani, A., Crisanti, A. & Vulpiani, A. 1999 Pair dispersion in synthetic fully developed turbulence. Phys. Rev. E 60, 67346741.CrossRefGoogle ScholarPubMed
Boffetta, G. & Sokolov, I.M. 2002 Statistics of two-particle dispersion in two-dimensional turbulence. Phys. Fluids 14, 32243232.CrossRefGoogle Scholar
Borzou, B. 2016 Lagrangian trackers to investigate the detonation dynamics. http://detonationlab.blogspot.ca/2016/05/lagrangian-trackers-to-investigate.html.Google Scholar
Bourgoin, M., Ouellette, N.T., Xu, H., Berg, J. & Bodenschatz, E. 2006 The role of pair dispersion in turbulent flow. Science 311, 835838.CrossRefGoogle ScholarPubMed
Buaria, D., Sawford, B.L. & Yeung, P.K. 2015 Characteristics of backward and forward two-particle relative dispersion in turbulence at different Reynolds numbers. Phys. Fluids 27, 105101.CrossRefGoogle Scholar
Buckmaster, J. 1989 A theory for triple point spacing in overdriven detonation waves. Combust. Flame 77, 219228.CrossRefGoogle Scholar
Buckmaster, J.D. & Ludford, G.S.S. 1986 The effect of structure on the stability of detonations. I. Role of the induction zone. Proc. Combust. Inst. 21, 16691676.CrossRefGoogle Scholar
Chapman, S. & Cowling, T.G. 1991 The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press.Google Scholar
Chinnayya, A., Hadjadj, A. & Ngomo, D. 2013 Computational study of detonation wave propagation in narrow channels. Phys. Fluids 25, 036101.CrossRefGoogle Scholar
Chiquete, C. & Short, M. 2019 Characteristic path analysis of confinement influence on steady two-dimensional detonation propagation. J. Fluid Mech. 863, 789816.CrossRefGoogle Scholar
Crane, J., Lipkowicz, J.T., Shi, X., Wlokas, I., Kempf, A.M. & Wang, H. 2023 Three-dimensional detoantion structure and its response to confinement. Proc. Combust. Inst. 39, 29152923.CrossRefGoogle Scholar
Crane, J., Shi, X., Lipkowicz, J.T., Kempf, A.M. & Wang, H. 2021 Geometric modeling and analysis of detonation cellular stability. Proc. Combust. Inst. 38, 35853593.CrossRefGoogle Scholar
Darragh, R., Towery, Z., Poludnenko, A.Y. & Hamlington, P.E. 2021 Particle pair dispersion and eddy diffusivity in a high-speed premixed flame. Proc. Combust. Inst. 38, 28452852.CrossRefGoogle Scholar
Desbordes, D. & Presles, H.N. 2012 Multi-scaled cellular detonation. In Shock Waves Science and Technology Library (ed. F. Zhang), vol. 6, pp. 281–338. Springer.CrossRefGoogle Scholar
Eckett, C.A., Quirk, J.J. & Shepherd, J.E. 2000 The role of unsteadiness in direct initiation of gaseous detonations. J. Fluid Mech. 421, 147183.CrossRefGoogle Scholar
Edwards, D.H., Jones, A.T. & Phillips, D.E. 1976 The location of the Chapman-Jouguet surface in a multiheaded detonation wave. J. Phys. D: Appl. Phys. 9, 13311342.CrossRefGoogle Scholar
Emmons, H.W. 1958 Flow discontinuities associated with combustion. In Fundamentals of Gas Dynamics in High Speed Aerodynamics and Jet Propulsion (ed. H.W. Emmons). Princeton University Press.Google Scholar
Faria, L.M. 2014 Qualitative and asymptotic theory of detonations. PhD thesis, King Abdullah University of Science and Technology.Google Scholar
Favre, A. 1965 Equation des gas turbulents compressibles. J. Méc. 4, 361421.Google Scholar
Ficket, W. & Davis, W.C. 2000 Detonation Theory and Experiment. Dover Publication.Google Scholar
Gamezo, V.N., Desbordes, D. & Oran, E.S. 1999 a Formation and evolution of two-dimensional cellular structure. Combust. Flame 116, 154165.CrossRefGoogle Scholar
Gamezo, V.N., Desbordes, D. & Oran, E.S. 1999 b Two-dimensional reactive flow dynamics in cellular detonation waves. Shock Waves 9, 1117.CrossRefGoogle Scholar
Gamezo, V.N., Vasil'ev, A.A., Khokhlov, A.M. & Oran, E.S. 2000 Fine cellular structure produced by marginal detonations. Proc. Combust. Inst. 28, 611617.CrossRefGoogle Scholar
Gordon, S., McBride, B.J. & Zeleznik, F.J. 1984 Computer program for calculation of complex chemical equilibrium compositions and applications supplement I - transport properties. NASA Tech. Rep. 86885.Google Scholar
Gottlieb, S., Shu, C. & Tadmor, E. 2001 Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89112.CrossRefGoogle Scholar
Gou, X., Sun, W., Chen, Z. & Ju, Y. 2010 A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanism. Combust. Flame 157, 11111121.CrossRefGoogle Scholar
Han, W., Kong, W., Gao, Y. & Law, C.K. 2017 The role of global curvature on the structure and propagation of weakly unstable cylindrical detonations. J. Fluid Mech. 813, 458481.CrossRefGoogle Scholar
Han, W., Wang, C. & Law, C.K. 2019 Role of transversal concentration gradient in detonation propagation. J. Fluid Mech. 865, 602649.CrossRefGoogle Scholar
Henrick, A.K., Aslam, T.D. & Powers, J.M. 2006 Simulations of pulsating one-dimensional detonations with true fifth order accuracy. J. Comput. Phys. 213, 311329.CrossRefGoogle Scholar
Higgins, A. 2012 Steady one-dimensional detonations. In Shock Waves Science and Technology Library (ed F. Zhang), vol. 6, chap. 2, pp. 33–105. Springer.CrossRefGoogle Scholar
Hong, Z., Davidson, D.F. & Hanson, R.K. 2011 An improved H$_2$/O$_2$ mechanism based on recent shock tube/laser absorption measurements. Combust. Flame 158, 633644.CrossRefGoogle Scholar
Hu, F., Wang, R. & Chen, X. 2016 A modified fifth-order WENOZ method for hyperbolic conservation laws. J. Comput. Appl. Maths 303, 5668.CrossRefGoogle Scholar
Jarsalé, G., Virot, F. & Chinnayya, A. 2016 Ethylene-air detonation in water spray. Shock Waves 26, 561572.CrossRefGoogle Scholar
Jourdaine, J., Tsuboi, N. & Hayashi, A.K. 2022 Investigation of liquid n-heptane/air spray detonation with an Eulerian-Eulerian model. Combust. Flame 244, 112278.CrossRefGoogle Scholar
Jullien, M., Paret, J. & Tabeling, P. 1999 Richardson pair dispersion in two-dimensional turbulence. Phys. Rev. Lett. 82, 28722875.CrossRefGoogle Scholar
Kaneshige, M. & Shepherd, J.E. 1997 Detonation database. Tech. Rep. FM97-8. Graduate Aeronautical Laboratories, California Institute of Technology.Google Scholar
Kasimov, A.R. & Stewart, D.S. 2004 On the dynamics of self-sustained one-dimensional detonations: a numerical study in the shock-attached frame. Phys. Fluids 16, 35663578.CrossRefGoogle Scholar
Kee, R.J., Coltrin, M.E. & Glarborg, P. 2003 Chemically Reacting Flow Theory and Practice. Wiley.CrossRefGoogle Scholar
Kim, K.H., Kim, C. & Rho, O. 2001 Methods for the accurate computations of hypersonic flows. I. AUSMPW+ scheme. J. Comput. Phys. 174, 3380.CrossRefGoogle Scholar
Kiyanda, C.B. & Higgins, A.J. 2013 Photographic investigation into the mechanism of combustion in irregular detonation waves. Shock Waves 23, 115130.CrossRefGoogle Scholar
Lalchandani, S. 2022 Modelling of quasi steady detonations with inert confinement. Master thesis, University of Ottawa.Google Scholar
Lau-Chapdelaine, S.S.-M., Xiao, Q. & Radulescu, M.I. 2021 Viscous jetting and Mach stem bifurcation in shock reflections: experiments and simulations. J. Fluid Mech. 908, A18.CrossRefGoogle Scholar
Law, C.K. 2006 Combustion Physics. Cambridge University Press.CrossRefGoogle Scholar
Lee, J.H.S. 2008 The Detonation Phenomenon. Cambridge University Press.CrossRefGoogle Scholar
Lee, J.H.S. & Radulescu, M.I. 2005 On the hydrodynamic thickness of cellular detonations. Combust. Explos. Shock Waves 15, 205225.Google Scholar
Maxwell, B.M., Bhattacharjee, R.R., Lau-Chapedlaine, S.S.M., Falle, S.A.E.G., Sharpe, G.J. & Radulescu, M.I. 2017 Influence of turbulent fluctuation on detonation propagation. J. Fluid Mech. 818, 646696.CrossRefGoogle Scholar
Maxwell, B.M., Pekalski, A. & Radulescu, M.I. 2018 Modelling of the transition of a turbulent shock-flame complex to detonation using the linear eddy model. Combust. Flame 192, 340357.CrossRefGoogle Scholar
Mazaheri, K., Mahmoudi, Y. & Radulescu, M.I. 2012 Diffusion and hydrodynamic instabilities in gaseous detonations. Combust. Flame 159, 21382154.CrossRefGoogle Scholar
McBride, B.J., Gordon, S. & Reno, M.A. 1993 Coefficients for calculating thermodynamic and transport properties of individual species. NASA Tech. Rep. 4513.Google Scholar
Mével, R. & Gallier, S. 2018 Structure of detonation propagating in lean and rich dimethyl ether-oxygen mixtures. Shock Waves 28, 955966.CrossRefGoogle Scholar
Mi, X., Higgins, A.J., Ng, H.D., Kiyanda, C.B. & Nikiforakis, N. 2017 b Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium. Phys. Rev. Fluids 2, 053201.CrossRefGoogle Scholar
Mi, X., Tang Yuk, K.C., Lee, J.H.S., Ng, H.D., Higgins, A.J. & Nikiforakis, N. 2018 An approach to measure the hydrodynamic thickness of detonations in numerical simulations. In 37th International Symposium on Combustion. Dublin, Ireland.Google Scholar
Mi, X., Timofeev, E.V & Higgins, A.J. 2017 a Effect of spatial discretization of energy on detonation wave propagation. J. Fluid Mech. 817, 306338.CrossRefGoogle Scholar
Mölder, S. 2016 Curved shock theory. Shock Waves 26, 337353.CrossRefGoogle Scholar
Monnier, V., Rodriguez, V., Vidal, P. & Zitoun, R. 2022 An analysis of three-dimensional patterns of experimental detonation cells. Combust. Flame 245, 112310.CrossRefGoogle Scholar
Murray, S.B. & Lee, J.H. 1983 On the transformation of planar detonation to cylindrical detonation. Combust. Flame 52, 262289.CrossRefGoogle Scholar
Murray, S.B. & Lee, J.H. 1985 The influence of yielding confinement on large-scale ethylene-air detonations. In Dynamics of Shock Waves, Explosion, and Detonations (ed. R.I. Soloukhin, A.K. Oppenheim, N. Manson & J.R. Bowen), pp. 80–103. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Murray, S.B. & Lee, J.H. 1986 The influence of physical boundaries on gaseous detonation waves. Prog. Astronaut. Aeronaut. 106, 329355.Google Scholar
Neufeld, P.D., Janzen, A.R. & Aziz, R.A. 1972 Empirical equations to calculate 16 of the transport collision integral $\varOmega ^{(l,s)*}$ for the Lennard-Jones (12-6) potential. J. Chem. Phys. 57, 11001102.CrossRefGoogle Scholar
Ng, H.D., Higgins, A.J., Kiyanda, C.B., Radulescu, M.I., Lee, J.H.S., Bates, K.R. & Nikiforakis, N. 2005 a Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations. Combust. Theor. Model. 9, 159170.CrossRefGoogle Scholar
Ng, H.D., Radulescu, M.I., Higgins, A.J., Nikiforakis, N. & Lee, J.H.S. 2005 b Numerical investigation of the instability for one-dimensioinal Chapman-Jouguet detonations with chain-branching kinetics. Combust. Theor. Model. 9, 385401.CrossRefGoogle Scholar
Oran, E.S., Chamberlain, G. & Pekalski, A. 2020 Mechanism and occurrence of detonation in vapor cloud explosions. Prog. Energy Combust. Sci. 77, 100804.CrossRefGoogle Scholar
Pintgen, F., Eckett, C.A., Austin, J.M. & Shepherd, J.E. 2003 Direct observations of reaction zone in propagating detonations. Combust. Flame 133, 211229.CrossRefGoogle Scholar
Poling, B.E., Prausnitz, J.M. & O'Connel, J.P. 2001 The Properties of Gases and Liquids, 5th edn. McGraw-Hill.Google Scholar
Radulescu, M.I. 2003 The propagation and failure mechanism of gaseous detonations: experiments in porous-walled tubes. PhD thesis, McGill University.Google Scholar
Radulescu, M.I. 2018 A detonation paradox: why inviscid detonation simulations predict the incorrect trend for the role of instability in gaseous cellular detonations? Combust. Flame 195, 151162.CrossRefGoogle Scholar
Radulescu, M.I. & Lee, J.H.S. 2002 The faillure mechanism of gaseous detonations: experiment in porous wall tube. Combust. Flame 131, 2946.CrossRefGoogle Scholar
Radulescu, M.I., Sharpe, G.J. & Bradley, D. 2013 A universal parameter quantifying explosion hazards, detonability and hot spot formation: the $\chi$ number. In Proc. of the Seventh International Seminar on Fire & Explosion Hazards (ed. D. Bradley, G. Makhviladze, V. Molkov, P. Sunderland & F. Tamanini), pp. 1–13. Research Publishing.CrossRefGoogle Scholar
Radulescu, M.I., Sharpe, G.J., Law, C.K. & Lee, J.H.S. 2007 The hydrodynamic structure of unstable cellular detonations. J. Fluid Mech. 580, 3181.CrossRefGoogle Scholar
Radulescu, M.I., Sharpe, G.J., Lee, J.H.S., Kiyanda, C.B., Higgins, A.J. & Hanson, R.K. 2005 The ignition mechanism in irregular structure gaseous detonations. Proc. Combust. Inst. 30, 18591867.CrossRefGoogle Scholar
Reaction Design 2000 Transport: a software package for the evaluation of gas-phase, multicomponent transport properties. TRA-036-1.Google Scholar
Reynaud, M., Taileb, S. & Chinnayya, A. 2020 Computation of the mean hydrodynamic structure of gaseous detonation with losses. Shock Waves 30, 645669.CrossRefGoogle Scholar
Reynaud, M., Virot, F. & Chinnayya, A. 2017 A computational study of the interaction of gaseous detonation with a compressible layer. Phys. Fluids 29, 056101.CrossRefGoogle Scholar
Richardson, L.F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110, 709737.Google Scholar
Romick, C.M., Aslam, T.D. & Power, J.M. 2012 The effect of diffusion on the dynamics of unsteady detonations. J. Fluid Mech. 699, 453464.CrossRefGoogle Scholar
Salazar, J.P.L.C. & Collins, L.R. 2009 Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41, 405432.CrossRefGoogle Scholar
Sawford, B. 2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289317.CrossRefGoogle Scholar
Sawford, B.L., Pope, S.B. & Yeung, P.K. 2013 Gaussian Lagrangian stochastic models for multi-particle dispersion. Phys. Fluids 25, 055101.CrossRefGoogle Scholar
Scatamacchia, R., Biferale, L. & Toschi, F. 2012 Extreme events in the dispersions of two neighboring particles under the influence of fluid turbulence. Phys. Rev. Lett. 109, 144501.CrossRefGoogle ScholarPubMed
Sharpe, G.J. 2002 Shock-induced ignition for a two-step chain-branching kinetics model. Phys. Fluids 14, 43724388.CrossRefGoogle Scholar
Shepherd, J.E. 2009 Detonation in gases. Proc. Combut. Inst. 32, 8398.CrossRefGoogle Scholar
Shi, L., Shen, H., Zhang, P., Zhang, D. & Wen, C. 2017 Assessment of vibrational non-equilibrium effect on detonation cell size. Combust. Sci. Technol. 189, 841853.CrossRefGoogle Scholar
Shimura, K. & Matsuo, A. 2018 Two-dimensional CFD-DEM simulation of vertical shock wave-induced dust lifting process. Shock Waves 28, 12851297.CrossRefGoogle Scholar
Short, M. & Quirk, J.J. 2018 High explosive detonation-confiner interactions. Annu. Rev. Fluid Mech. 50, 215242.CrossRefGoogle Scholar
Sokolov, I.M. 1999 Two-particle dispersion by correlated random velocity fields. Phys. Rev. E 60, 55285532.CrossRefGoogle ScholarPubMed
Sow, A., Chinnayya, A. & Hadjadj, A. 2014 Mean structure of one-dimensional unstable detonations with friction. J. Fluid Mech. 743, 503533.CrossRefGoogle Scholar
Sow, A., Chinnayya, A. & Hadjadj, A. 2015 Computational study of non-ideal and mildly-unstable detonation waves. Comput. Fluids 119, 4757.CrossRefGoogle Scholar
Sow, A., Chinnayya, A. & Hadjadj, A. 2019 On the viscous boundary layer of weakly unstable detonations in narrow channels. Comput. Fluids 179, 449458.CrossRefGoogle Scholar
Sow, A., Lau-Chapdelaine, S.M. & Radulescu, M.I. 2021 The effect of the polytropic index $\gamma$ on the structure of gaseous detonations. Proc. Combust. Inst. 38, 36333640.CrossRefGoogle Scholar
Stewart, D.S. & Kasimov, A.R. 2005 Theory of detonation with an embedded sonic locus. SIAM J. Appl. Maths 66, 384407.CrossRefGoogle Scholar
Strehlow, R.A. 1970 Multi-dimensional detonation wave structure. Astronaut. Acta 15, 345357.Google Scholar
Taileb, S. 2020 Vers des simulations numériques prédictives des détonations gazeuses - Influence de la cinétique chimique, de l’équation d’état et des effets tridimensionnels. PhD thesis, ISAE-ENSMA.Google Scholar
Taileb, S., Meluguizo-Gavilances, J. & Chinnayya, A. 2021 a Influence of the chemical modeling on the quenching limits of gaseous detonation waves confined by an inert layer. Combust. Flame 218, 247259.CrossRefGoogle Scholar
Taileb, S., Meluguizo-Gavilances, J. & Chinnayya, A. 2021 b The influence of the equation of state on the cellular structure of gaseous detonations. Phys. Fluids 33, 036105.CrossRefGoogle Scholar
Taileb, S., Reynaud, M., Chinnayya, A., Virot, F. & Bauer, P. 2018 Numerical study of 3D gaseous detonations in a square channel. Aerotec. Missili Spaz. 97, 96102.CrossRefGoogle Scholar
Tang, J. & Radulescu, M.I. 2013 Dynamics of shock induced ignition in Fickett's model: influence of $\chi$. Proc. Combust. Inst. 34, 20352041.CrossRefGoogle Scholar
Taylor, B.D., Kessler, D.A., Gamezo, V.N. & Oran, E.S. 2013 Numerical simulations of hydrogen detonations with detailed chemical kinetics. Proc. Combust. Inst. 34, 20092016.CrossRefGoogle Scholar
Vasilev, A.A. & Nikolaev, Y. 1978 Closed theoretical model of a detonation cell. Acta Astronaut. 5, 983996.CrossRefGoogle Scholar
Vasil'ev, A.A., Gavrilenko, T.P., Mitrofanov, V.V., Subbotin, V.A. & Topchiyan, M.E. 1972 Location of the sonic transition behind a detonation front. Combust. Explos. Shock Waves 8, 8084.CrossRefGoogle Scholar
Warnatz, J., Maas, U. & Dibble, R.W. 2006 Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 4th edn. Springer.Google Scholar
Watanabe, H. 2020 Gaseous detonation with dilute water spray in a two-dimensional straight channel: analysis based on numerical simulation. PhD thesis, Keio University.CrossRefGoogle Scholar
Watanabe, H., Matsuo, A., Chinnayya, A., Matsuoka, K., Kawasaki, A. & Kasahara, J. 2020 Numerical analysis of the mean structure of gaseous detonation with dilute water spray. J. Fluid Mech. 887, A4.CrossRefGoogle Scholar
Watanabe, H., Matsuo, A., Chinnayya, A., Matsuoka, K., Kawasaki, A. & Kasahara, J. 2021 Numerical analysis on behavior of dilute water droplets in detonation. Proc. Combust. Inst. 38, 37093716.CrossRefGoogle Scholar
Watanabe, H., Matsuo, A., Matsuoka, K., Kawasaki, A. & Kasahara, J. 2019 Numerical investigation on propagation behavior of gaseous detonation in water spray. Proc. Combust. Inst. 37, 36173626.CrossRefGoogle Scholar
Weber, M. & Olivier, H. 2003 The thickness of detonation waves visualised by slight obstacles. Shock Waves 13, 351365.CrossRefGoogle Scholar
Wilke, C.R. 1958 A viscosity equation for gas mixtures. J. Chem. Phys. 18, 517519.CrossRefGoogle Scholar
Wolanski, P. 2013 Detonative propulsion. Proc. Combust. Inst. 34, 125158.CrossRefGoogle Scholar
Xia, H., Francois, N., Faber, B., Punzmann, H. & Shats, M. 2019 Local anisotropy of laboratory two-dimensional turbulence affects pair dispersion. Phys. Fluids 31, 025111.CrossRefGoogle Scholar
Xiao, Q. & Radulescu, M.I. 2020 Dynamics of hydrogen-oxygen-argon cellular detonations with a constant mean lateral strain rate. Combust. Flame 215, 437457.CrossRefGoogle Scholar
Zhang, F. 2012 Detonation Dynamics, Shock Wave Science and Technology Reference Library. Springer.CrossRefGoogle Scholar
Zhou, Y., Zhang, X., Zhong, L., Deiterding, R., Zhou, L. & Wei, H. 2022 Effects of fluctuation in concentration on detonation propagation. Phys. Fluids 34, 076101.CrossRefGoogle Scholar