Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-20T15:55:38.923Z Has data issue: false hasContentIssue false

Kelvin waves in the nonlinear shallow water equations on the sphere: nonlinear travelling waves and the corner wave bifurcation

Published online by Cambridge University Press:  25 December 2008

JOHN P. BOYD*
Affiliation:
Department of Atmospheric, Oceanic and Space Science, University of Michigan, Ann Arbor, MI 48109-2143, USA
CHENG ZHOU
Affiliation:
Department of Atmospheric, Oceanic and Space Science, University of Michigan, Ann Arbor, MI 48109-2143, USA
*
Email address for correspondence: jpboyd@umich.edu

Abstract

The Kelvin wave is the lowest eigenmode of Laplace's tidal equation and is widely observed in both the ocean and the atmosphere. In this work, we neglect mean currents and instead include the full effects of the Earth's sphericity and the wave dispersion it induces. Through a mix of perturbation theory and numerical computations using a Fourier/Newton iteration/continuation method, we show that for sufficiently small amplitude, there are Kelvin travelling waves (cnoidal waves). As the amplitude increases, the branch of travelling waves terminates in a so-called corner wave with a discontinuous first derivative. All waves larger than the corner wave evolve to fronts and break. The singularity is a point singularity in which only the longitudinal derivative is discontinuous. As we solve the nonlinear shallow water equations on the sphere, with increasing ε (‘Lamb's parameter’), dispersion weakens, the amplitude of the corner wave decreases rapidly, and the longitudinal profile of the corner wave narrows dramatically.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, D. G., Holton, J. R. & Leovy, C. B. 1987 Middle Atmospheric Dynamics. Advances in Geophysics, Vol. 40. Academic.Google Scholar
Boyd, J. P. 1976 The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationships of eddy fluxes of heat, energy, and momentum. J. Atmos. Sci. 33, 22852291.2.0.CO;2>CrossRefGoogle Scholar
Boyd, J. P. 1978 a The choice of spectral functions on a sphere for boundary and eigenvalue problems: a comparison of Chebyshev, Fourier and associated Legendre expansions. Mon. Weath. Rev. 106, 11841191.2.0.CO;2>CrossRefGoogle Scholar
Boyd, J. P. 1978 b The effects of latitudinal shear on equatorial waves. Part I. theory and methods. J. Atmos. Sci. 35, 22362258.2.0.CO;2>CrossRefGoogle Scholar
Boyd, J. P. 1978 c The effects of latitudinal shear on equatorial waves. Part II. applications to the atmosphere. J. Atmos. Sci. 35, 22592267.2.0.CO;2>CrossRefGoogle Scholar
Boyd, J. P. 1980 The nonlinear equatorial Kelvin wave. J. Phys. Oceanogr. 10, 111.2.0.CO;2>CrossRefGoogle Scholar
Boyd, J. P. 1984 Equatorial solitary waves. Part IV. Kelvin solitons in a shear flow. Dyn. Atmos. Oceans 8, 173184.CrossRefGoogle Scholar
Boyd, J. P. 1991 Nonlinear equatorial waves. In Nonlinear Topics of Ocean Physics: Fermi Summer School, Course LIX (ed. Osborne, A. R.), pp. 5197. North-Holland.Google Scholar
Boyd, J. P. 1994 The slow manifold of a five mode model. J. Atmos. Sci. 51, 10571064.2.0.CO;2>CrossRefGoogle Scholar
Boyd, J. P. 1995 Eight definitions of the slow manifold: seiches, pseudoseiches and exponential smallness. Dyn. Atmos. Oceans 22, 4975.CrossRefGoogle Scholar
Boyd, J. P. 1998 High order models for the nonlinear shallow water wave equations on the equatorial beta-plane with application to Kelvin wave frontogenesis. Dyn. Atmos. Oceans 28 (2), 6991.CrossRefGoogle Scholar
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods. Dover.Google Scholar
Boyd, J. P. 2003 A Legendre pseudospectral method for computing travelling waves with corners (slope discontinuities) in one space dimension with application to Whitham's equation family. J. Comput. Phys. 189 (5), 98110.CrossRefGoogle Scholar
Boyd, J. P. 2005 a The Cnoidal Wave/Corner Wave/Breaking Wave Scenario: a one-sided infinite-dimension bifurcation. Math. Comput. Sim. 96 (3–4), 235242.CrossRefGoogle Scholar
Boyd, J. P. 2005 b Near-corner waves of the Camassa–Holm equation. Phys. Lett. A 336, 342348.CrossRefGoogle Scholar
Boyd, J. P. 2005 c Ostrovsky and Hunter's generic wave equation for weakly dispersive short waves: analytical and numerical study of the parabolic and paraboloidal travelling waves (corner and near-corner waves). Eur. J. Appl. Maths 16 (1), 6581.CrossRefGoogle Scholar
Boyd, J. P. 2005 d The short-wave limit of linear equatorial Kelvin waves in a shear flow. J. Phys. Oceanogr. 35 (6), 11381142.CrossRefGoogle Scholar
Boyd, J. P. 2006 Fourier pseudospectral method with Kepler mapping for travelling waves with discontinuous slope: application to corner waves of the Ostrovsky–Hunter equation and equatorial Kelvin waves in the four-mode approximation. Appl. Math. Comput. 177 (1), 289299.Google Scholar
Boyd, J. P. & Christidis, Z. D. 1982 Low wavenumber instability on the equatorial beta-plane. Geophys. Res. Lett. 9, 769772.CrossRefGoogle Scholar
Boyd, J. P. & Zhou, C. 2008 Uniform asymptotics for the linear Kelvin wave in spherical geometry. J. Atmos. Sci. 65 (2), 655660.CrossRefGoogle Scholar
Chapman, S. & Lindzen, R. S. 1970 Atmospheric Tides. D. Reidel.Google Scholar
Chen, G. Y. & Boyd, J. P. 2002 Nonlinear wave packets of equatorial Kelvin waves. Geophys. Astrophys. Fluid Dyn. 96 (5), 357379.CrossRefGoogle Scholar
El, G. A., Grimshaw, R. H. J. & Kamchatnov, A. M. 2007 Evolution of solitary waves and undular bores in shallow-water flows over a gradual slope with bottom friction. J. Fluid Mech. 585, 213244.CrossRefGoogle Scholar
Fedorov, A. V. & Melville, W. K. 2000 Kelvin fronts on the equatorial thermocline. J. Phys. Oceanogr. 30 (7), 16921705.2.0.CO;2>CrossRefGoogle Scholar
Gill, A. E. 1982 Atmosphere–Ocean Dynamics. International Geophysics, Vol. 30. Academic.Google Scholar
Greatbatch, R. J. 1985 Kelvin wave fronts, Rossby solitary waves and nonlinear spinup of the equatorial oceans. J. Geophys. Res. 90, 90979107.CrossRefGoogle Scholar
Grimshaw, R. 1970 Solitary wave in water of variable depth. J. Fluid Mech. 42, 639–.CrossRefGoogle Scholar
Grimshaw, R. 1971 Solitary wave in water of variable depth. Part 2. J. Fluid Mech. 46, 611–.CrossRefGoogle Scholar
Grimshaw, R. 1979 Slowly varying solitary waves. Part 1. Korteweg-deVries. Proc. R. Soc. Lond. A 368(1734), 359375.Google Scholar
Grimshaw, R. H. J., Ostrovsky, L. A., Shrira, V. I. & Stepanyants, Y. A. 1998 Long nonlinear surface and internal gravity waves in a rotating ocean. Surv. Geophys. 19, 289338.CrossRefGoogle Scholar
Le Sommer, J., Reznik, G. M. & Zeitlin, V. 2004 Nonlinear geostrophic adjustment of long-wave disturbances in the shallow-water model on the equatorial beta-plane. J. Fluid Mech. 515, 135170.CrossRefGoogle Scholar
Lindzen, R. S. 1970 The application of terrestial atmospheric tidal theory to Venus and Mars. J. Atmos. Sci. 27 (4), 536549.2.0.CO;2>CrossRefGoogle Scholar
Long, B. & Chang, P. 1990 Propagation of an equatorial Kelvin wave in a varying thermocline. J. Phys. Oceanogr. 20, 18261841.2.0.CO;2>CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1968 The eigenfunctions of Laplace's tidal equation over a sphere. Phil. Trans. R. Soc. Lond. A 262, 511607.CrossRefGoogle Scholar
Longuet-Higgins, M. S. & Fox, M. J. H. 1996 Asymptotic theory for the almost-highest wave. J. Fluid Mech. 317, 119.CrossRefGoogle Scholar
Lorenz, E. N. & Krishnamurthy, V. 1987 On the nonexistence of a slow manifold. J. Atmos. Sci. 44, 29402950.2.0.CO;2>CrossRefGoogle Scholar
Majda, A. 2003 Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes, Vol. 9. American Mathematical Society.CrossRefGoogle Scholar
Majda, A. J., Rosales, R. R., Tabak, E. G. & Turner, C. V. 1999 Interaction of large-scale equatorial waves and dispersion of Kelvin waves through topographic resonances. J. Atmos. Sci. 56 (24), 41184133.2.0.CO;2>CrossRefGoogle Scholar
Marshall, H. G. & Boyd, J. P. 1987 Solitons in a continuously stratified equatorial ocean. J. Phys. Oceanogr. 17, 10161031.2.0.CO;2>CrossRefGoogle Scholar
Milewski, P. A. & Tabak, E. G. 1999 A reduced model for nonlinear dispersive waves in a rotating environment. Geophys. Astrophys. Fluid Dyn. 90, 139159.CrossRefGoogle Scholar
Moore, D. W. & Philander, S. G. H. 1977 Modelling of the tropical oceanic circulation. In The Sea (ed. Goldberg, E. D.), vol. 6, pp. 319361. Wiley.Google Scholar
Natarov, A. & Boyd, J. P. 2001 Beyond-all-orders instability in the equatorial Kelvin wave. Dyn. Atmos. Oceans 33 (3), 181200.CrossRefGoogle Scholar
Orszag, S. A. 1974 Fourier series on spheres. Mon. Weath. Rev. 102, 5675.2.0.CO;2>CrossRefGoogle Scholar
Ostrovsky, L. A. 1978 Nonlinear internal waves in a rotation ocean. Oceanology 18, 181191.Google Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. 2nd ed.Springer.CrossRefGoogle Scholar
Ripa, P. 1982 Nonlinear wave–wave interactions in a one-layer reduced-gravity model on the equatorial beta-plane. J. Phys. Oceanogr. 12, 97111.2.0.CO;2>CrossRefGoogle Scholar
Ripa, P. 1985 Nonlinear effects in the propagation of Kelvin pulses across the Pacific Ocean. In Advances in Nonlinear Waves (ed. Debnath, L.), pp. 4356. Pitman.Google Scholar
Shrira, V. I. 1981 Propagation of long nonlinear waves in a layer of rotating fluid. Ivestiya Atm. Oceanic Phys. 17 (1), 7681.Google Scholar
Shrira, V. I. 1986 On long strongly nonlinear waves in a rotating ocean. Ivestiya Atm. Oceanic Phys. 22 (4), 298305.Google Scholar
Stokes, G. G. 1847 On the theory of oscillatory waves. Camb. Trans. 8, 441473.Google Scholar
Williams, G. P. 1996 Jovian dynamics. Part I. Vortex stability, structure and genesis. J. Atmos. Sci. 53 (18), 26852734.2.0.CO;2>CrossRefGoogle Scholar
Williams, G. P. & Wilson, R. J. 1988 The stability and genesis of Rossby vortices. J. Atmos. Sci. 45, 207249.2.0.CO;2>CrossRefGoogle Scholar
Zurek, R. W. 1976 Diurnal tide in Martian atmosphere. J. Atmos. Sci. 33 (2), 321337.2.0.CO;2>CrossRefGoogle Scholar