Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-05T12:23:29.290Z Has data issue: false hasContentIssue false

The interactions of rectangular synthetic jets with a laminar cross-flow

Published online by Cambridge University Press:  27 July 2020

Lei Wang
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beijing University of Aeronautics and Astronautics, Beijing100191, PR China
Li-Hao Feng*
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beijing University of Aeronautics and Astronautics, Beijing100191, PR China
*
Email address for correspondence: lhfeng@buaa.edu.cn

Abstract

Three-dimensional flow fields of a rectangular synthetic jet with aspect ratio of 3 and its interaction with a laminar cross-flow are measured using time-resolved tomographic particle image velocimetry. The synthetic-jet to free-stream velocity ratio is fixed at 1, and two orifice orientations, normal to (spanwise configuration) and aligned with (streamwise configuration) the cross-flow direction, respectively, are investigated. The flow scenarios are composed of a tilted vortex ring, a secondary trailing vortex and a tertiary near-wall vortex. Compared to previous results for circular cases, the legs of the trailing structures are found to be jointed in the spanwise direction by two shear-layer vortices at different wall-normal heights. In addition, the near-wall vortex is a crescent-shaped spanwise vortex. For the first time, as the peculiar process of non-circular vortex rings in quiescent condition, axis switching is validated to exist in the cross-flow. Associated with axis switching, the spanwise case exhibits interaction between the leeward vortex of the vortex ring and the downstream shear-layer vortex, which causes slower penetration and recovery of vortex ring tilting, but faster jet transition. Furthermore, the trailing structures and vortex ring are weakened, leading to lower peaks of the velocity deficit and overshoot in the jet region than those for the streamwise case. On the other hand, the spanwise case can induce a stronger near-wall vortex, which transfers more momentum and initial disturbance into the boundary layer. Consequently, the spanwise case yields larger velocity gradient and velocity fluctuation peak inside the boundary layer with a lower shape factor, suggesting greater efficiency of promoting boundary-layer transition.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amitay, M. & Cannelle, F. 2006 Evolution of finite span synthetic jets. Phys. Fluids 18 (5), 054101.CrossRefGoogle Scholar
Cantwell, B. & Coles, D. 1983 An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321374.CrossRefGoogle Scholar
Cater, J. E. & Soria, J. 2002 The evolution of round zero-net-mass-flux jets. J. Fluid Mech. 472, 167200.CrossRefGoogle Scholar
Crook, A. & Wood, N. J. 2001 Measurements and visualization of synthetic jets. AIAA Paper 2001–0145. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Dandois, J., Garnier, E. & Sagaut, P. 2007 Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech. 574, 2558.CrossRefGoogle Scholar
DeMauro, E. P., Leong, C. M. & Amitay, M. 2013 Interaction of a synthetic jet with the flow over a low aspect ratio cylinder. Phys. Fluids 25 (6), 064104.CrossRefGoogle Scholar
Elsinga, G. E., Scarano, F., Wieneke, B. & van Oudheusden, B. W. 2006 Tomographic particle image velocimetry. Exp. Fluids 41 (6), 933947.CrossRefGoogle Scholar
Feng, L. H., & Wang, J. J. 2010 Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J. Fluid Mech. 662, 232259.CrossRefGoogle Scholar
Feng, L. H. & Wang, J. J. 2014 The virtual aeroshaping enhancement by synthetic jets with variable suction and blowing cycles. Phys. Fluids 26 (1), 014105.CrossRefGoogle Scholar
Fric, T. F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.CrossRefGoogle Scholar
Glezer, A. & Amitay, M. 2002 Synthetic jets. Ann. Rev. Fluid Mech. 34, 503529.CrossRefGoogle Scholar
Green, M. A., Rowley, C. W. & Haller, G. 2007 Detection of Lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech. 572, 111120.CrossRefGoogle Scholar
Grinstein, F. F. 2001 Vortex dynamics and entrainment in rectangular free jets. J. Fluid Mech. 437, 69101.CrossRefGoogle Scholar
Gutmark, E. J. & Grinstein, F. F. 1999 Flow control with noncircular jets. Ann. Rev. Fluid Mech. 31, 239272.CrossRefGoogle Scholar
Gutmark, E. J., Ibrahim, I. M. & Murugappan, S. 2008 Circular and noncircular subsonic jets in cross flow. Phys. Fluids 20 (7), 075110.CrossRefGoogle Scholar
Haller, G. 2015 Lagrangian coherent structures. Ann. Rev. Fluid Mech. 47, 137161.CrossRefGoogle Scholar
Haller, G. & Yuan, G. 2000 Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147 (3–4), 352370.CrossRefGoogle Scholar
He, G. S., Wang, J. J. & Pan, C. 2013 Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake. J. Fluid Mech. 718, 116130.CrossRefGoogle Scholar
Holman, R., Utturkar, Y., Mittal, R., Smith, B. & Cattafesta, L. 2005 Formation criterion for synthetic jets. AIAA J. 43 (10), 21102115.CrossRefGoogle Scholar
Jabbal, M. & Zhong, S. 2008 The near wall effect of synthetic jets in a boundary layer. Intl J. Heat Fluid Flow 29 (1), 119130.CrossRefGoogle Scholar
Jabbal, M. & Zhong, S. 2010 Particle image velocimetry measurements of the interaction of synthetic jets with a zero-pressure gradient laminar boundary layer. Phys. Fluids 22 (6), 063603.CrossRefGoogle Scholar
Kelso, R. M., Lim, T. T. & Perry, A. E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.CrossRefGoogle Scholar
Kotapati, R. B., Mittal, R. & Cattafesta, L. N. III 2007 Numerical study of a transitional synthetic jet in quiescent external flow. J. Fluid Mech. 581, 287321.CrossRefGoogle Scholar
Lardeau, S. & Leschziner, M. A. 2011 The interaction of round synthetic jets with a turbulent boundary layer separating from a round ramp. J. Fluid Mech. 683, 172211.CrossRefGoogle Scholar
Lim, T. T., New, T. H. & Luo, S. C. 2001 On the development of large-scale structures of a jet normal to a cross flow. Phys. Fluids 13 (3), 770775.CrossRefGoogle Scholar
Ma, L. Q., Feng, L. H., Pan, C., Gao, Q. & Wang, J. J. 2015 Fourier mode decomposition of PIV data. Sci. China Technol. Sci. 58 (11), 19351948.CrossRefGoogle Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Ann. Rev. Fluid Mech. 45, 379407.CrossRefGoogle Scholar
Margason, R. J. 1993 Fifty years of jet in cross flow research. AGARD Paper CP-534. AGARD.Google Scholar
New, T. H., Lim, T. T. & Luo, S. C. 2003 Elliptic jets in cross-flow. J. Fluid Mech. 494, 119140.CrossRefGoogle Scholar
Nichols, J. W., Schmid, P. J. & Riley, J. J. 2007 Self-sustained oscillations in variable-density round jets. J. Fluid Mech. 29, 285326.Google Scholar
Qu, Y., Wang, J. J., Sun, M., Feng, L. H., Pan, C., Gao, Q. & He, G. S. 2017 Wake vortex evolution of square cylinder with a slot synthetic jet positioned at the rear surface. J. Fluid Mech. 812, 940965.CrossRefGoogle Scholar
Ravi, B. R., Mittal, R. & Najjar, F. M. 2004 Study of three-dimensional synthetic jet flowfields using direct numerical simulation. AIAA Paper 2004–0091. American Institute of Aeronautics and Astronautics.Google Scholar
Sarkar, S. & Sarkar, S. 2009 Large-eddy simulation of wake and boundary layer interactions behind a circular cylinder. Trans. ASME: J. Fluids Engng 131 (9), 091201.Google Scholar
Sau, R. & Mahesh, K. 2008 Dynamics and mixing of vortex rings in crossflow. J. Fluid Mech. 604, 389409.CrossRefGoogle Scholar
Scarano, F. & Riethmuller, M. L. 2000 Advances in iterative multigrid PIV image processing. Exp. Fluids 29 (1), S051S060.CrossRefGoogle Scholar
Shadden, S. C., Dabiri, J. O. & Marsden, J. E. 2006 Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids 18 (4), 047105.CrossRefGoogle Scholar
Shi, X. D., Feng, L. H. & Wang, J. J. 2019 Evolution of elliptic synthetic jets at low Reynolds number. J. Fluid Mech. 868, 6696.CrossRefGoogle Scholar
Smith, D. R. 2002 Interaction of a synthetic jet with a crossflow boundary layer. AIAA J. 40 (11), 22772288.CrossRefGoogle Scholar
Smith, B. L. & Glezer, A. 1998 The formation and evolution of synthetic jets. Phys. Fluids 10 (9), 22812297.CrossRefGoogle Scholar
Smith, S. H. & Mungal, M. G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.CrossRefGoogle Scholar
Smith, B. L. & Swift, G. W. 2003 A comparison between synthetic jets and continuous jets. Exp. Fluids 34 (4), 467472.CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to ${R_\theta } = 1410$. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Tang, H., Salunkhe, P., Zheng, Y. Y., Du, J. X. & Wu, Y. H. 2014 On the use of synthetic jet actuator arrays for active flow separation control. Exp. Therm. Fluid Sci. 57, 110.CrossRefGoogle Scholar
Van Buren, T. & Amitay, M. 2016 Comparison between finite-span steady and synthetic jets issued into a quiescent fluid. Exp. Therm. Fluid Sci. 75, 1624.CrossRefGoogle Scholar
Van Buren, T., Beyar, M., Leong, C. M. & Amitay, M. 2016 a Three-dimensional interaction of a finite-span synthetic jet in a crossflow. Phys. Fluids 28 (3), 037105.CrossRefGoogle Scholar
Van Buren, T., Beyar, M., Leong, C. M. & Amitay, M. 2016 b Impact of orifice orientation on a finite-span synthetic jet interaction with a crossflow. Phys. Fluids 28 (3), 037106.CrossRefGoogle Scholar
Van Buren, T., Whalen, E. & Amitay, M. 2014 Vortex formation of a finite-span synthetic jet: effect of rectangular orifice geometry. J. Fluid Mech. 745, 180207.CrossRefGoogle Scholar
Wang, L., Feng, L. H., Wang, J. J. & Li, T. 2018 Evolution of low-aspect-ratio rectangular synthetic jets in a quiescent environment. Exp. Fluids 59 (6), 91.CrossRefGoogle Scholar
Wang, L., Feng, L. H. & Xu, Y. 2019 Laminar-to-transitional evolution of three-dimensional vortical structures in a low-aspect-ratio rectangular synthetic jet. Exp. Therm. Fluid Sci. 104, 129140.CrossRefGoogle Scholar
Wang, C. Y., Gao, Q., Wang, H. P., Wei, R. J. & Wang, J. J. 2016 Divergence-free smoothing for volumetric PIV data. Exp. Fluids 57 (1), 123.CrossRefGoogle Scholar
Wieneke, B. 2008 Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45 (4), 549556.CrossRefGoogle Scholar
Xu, Y., Wang, J. J., Feng, L. H., He, G. S. & Wang, Z. Y. 2018 Laminar vortex ring impinging onto porous walls with a constant porosity. J. Fluid Mech. 837, 729764.CrossRefGoogle Scholar
Ye, Q. Q., Schrijer, F. F. & Scarano, F. 2016 Boundary layer transition mechanism behind a micro-ramp. J. Fluid Mech. 793, 132161.CrossRefGoogle Scholar
Zhang, S. & Zhong, S. 2011 Turbulent flow separation control over a two-dimensional ramp using synthetic jets. AIAA J. 49 (12), 26372649.CrossRefGoogle Scholar
Zhong, S., Millet, F. & Wood, N. J. 2005 The behavior of circular synthetic jets in a laminar boundary layer. Aeronaut. J. 109 (1100), 461470.CrossRefGoogle Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar
Zhou, J. & Zhong, S. 2009 Numerical simulation of the interaction of a circular synthetic jet with a boundary layer. Comput. Fluids 38 (2), 393405.CrossRefGoogle Scholar
Zhou, J. & Zhong, S. 2010 Coherent structures produced by the interaction between synthetic jets and a laminar boundary layer and their surface shear stress patterns. Comput. Fluids 39 (8), 12961313.CrossRefGoogle Scholar
Zhu, H. Y., Wang, C. Y., Wang, H. P. & Wang, J. J. 2017 Tomographic PIV investigation on 3D wake structures for flow over a wall-mounted short cylinder. J. Fluid Mech. 831, 743778.CrossRefGoogle Scholar
Zong, H. & Kotsonis, M. 2019 Effect of velocity ratio on the interaction between plasma synthetic jets and turbulent cross-flow. J. Fluid Mech. 856, 928962.CrossRefGoogle Scholar